cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293182 Expansion of Product_{k>=1} (1 + 2*x^k - x^(2*k)).

This page as a plain text file.
%I A293182 #8 Oct 01 2017 19:58:27
%S A293182 1,2,1,6,3,6,16,12,16,22,51,36,60,62,91,154,148,176,236,278,328,552,
%T A293182 508,670,771,988,1068,1438,1844,1998,2401,2882,3300,4030,4640,5406,
%U A293182 7212,7584,9072,10480,12612,13964,17024,18860,22545,27298,30340,34372,41068
%N A293182 Expansion of Product_{k>=1} (1 + 2*x^k - x^(2*k)).
%H A293182 Robert Israel, <a href="/A293182/b293182.txt">Table of n, a(n) for n = 0..10000</a>
%F A293182 a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2^(3/2) * sqrt(Pi) * n^(3/4)), where c = Pi^2/6 + log(1+sqrt(2))^2/2 + polylog(2, 3-2*sqrt(2))/2 - 2*polylog(2, sqrt(2)-1) = 1.18805291660775259061867850175092520191179528961165451864292...
%p A293182 N:= 100:
%p A293182 P:= mul(1+2*x^m- x^(2*m), m=1..N):
%p A293182 S:= series(P,x,N+1):
%p A293182 seq(coeff(S,x,n), n=0..N); # _Robert Israel_, Oct 01 2017
%t A293182 nmax = 100; CoefficientList[Series[Product[1+2*x^k-x^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A293182 Cf. A162891, A263401, A276527, A293138.
%K A293182 nonn
%O A293182 0,2
%A A293182 _Vaclav Kotesovec_, Oct 01 2017