This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293185 #28 May 14 2019 08:07:30 %S A293185 1,2,6,24,96,120,480,840,3360,7560,30240,83160,272160,332640,1081080, %T A293185 2993760,4324320,17297280,38918880,69189120,73513440,294053760, %U A293185 661620960,1176215040,1396755360,5587021440,12570798240,22348085760,32125373280,128501493120 %N A293185 Bi-unitary highly composite numbers: where the number of bi-unitary divisors of n (A286324) increases to a record. %C A293185 Analogous to highly composite numbers (A002182) with number of bi-unitary divisors (A286324) instead of number of divisors (A000005). %C A293185 The first 12 terms are common with bi-unitary superabundant numbers (A292984). %C A293185 The record numbers of bi-unitary divisors are 1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, ... (see the link for more values). %H A293185 Amiram Eldar, <a href="/A293185/b293185.txt">Table of n, a(n) for n = 1..122</a> %H A293185 Amiram Eldar, <a href="/A293185/a293185_1.txt">Table of n, a(n), A286324(a(n)) for n = 1..122</a> %t A293185 f[p_, e_] := If[OddQ[e], (e + 1), e]; bdivnum[n_] := If[n == 1, 1, Times @@ (f @@@ FactorInteger[n])]; bm = 0; s = {}; Do[b1 = bdivnum [k]; If[b1 > bm, AppendTo[s, k]; bm = b1], {k, 1, 100000}]; s %Y A293185 Cf. A002182, A286324, A292984. %K A293185 nonn %O A293185 1,2 %A A293185 _Amiram Eldar_, Oct 01 2017 %E A293185 a(18)-a(30) from _Amiram Eldar_, Dec 01 2018