This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293199 #14 Dec 17 2020 15:17:53 %S A293199 2,3,5,7,11,13,17,23,31,41,47,53,71,83,97,107,127,167,191,223,251,293, %T A293199 383,431,503,587,647,863,881,971,1151,1511,1567,2267,2351,2591,2687, %U A293199 3023,3527,3583,4373,4703,4801,6047,6143 %N A293199 Primes of the form 2^q * 3^r * 7^s - 1. %C A293199 Mersenne primes A000668 occur when (q, r, s) = (q, 0 ,0) with q > 0. %C A293199 a(2) = 3 is a Mersenne prime but a(3) = 5 is not. %C A293199 For n > 2, all terms = {1, 5} mod 6. %H A293199 Robert Israel, <a href="/A293199/b293199.txt">Table of n, a(n) for n = 1..4000</a> %e A293199 3 is a member because it is a prime number and 2^2 * 3^0 * 7^0 - 1 = 3. %e A293199 503 is a member because it is a prime number and 2^3 * 3^2 * 7^1 - 1 = 503. %e A293199 list of (q, r, s): (0, 1 ,0), (2, 0, 0), (1, 1, 0), (3, 0, 0), (2, 1, 0), (1, 0, 1), (1, 2, 0), (3, 1, 0),(5, 0, 0), (1, 1, 1), (4, 1, 0), (1, 3, 0), (3, 2, 0), (2, 1, 1), ... %p A293199 N:= 10^4: # for terms <= N %p A293199 S:= {1}: %p A293199 for p in {2,3,7} do S:= map(proc(s) local i; seq(s*p^i,i=0..floor(log[p](N/s))) end proc, S) od: %p A293199 sort(convert(select(isprime,map(`-`,S,1)),list)); # _Robert Israel_, Dec 17 2020 %o A293199 (GAP) K:=10^5+1;; # to get all terms <=K %o A293199 A:=Filtered([1..K],IsPrime);; I:=[3,7];; %o A293199 B:=List(A,i->Elements(Factors(i+1)));; %o A293199 C:=List([0..Length(I)],j->List(Combinations(I,j),i->Concatenation([2],i))); %o A293199 A293199:=Concatenation([2],List(Set(Flat(List([1..Length(C)],i->List([1..Length(C[i])],j->Positions(B,C[i][j]))))),i->A[i])); %Y A293199 Cf. A000668, A005105, A293194. %K A293199 nonn %O A293199 1,1 %A A293199 _Muniru A Asiru_, Oct 02 2017