cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293200 Primes p with a primitive root g such that g^3 = g + 1 mod p.

Original entry on oeis.org

5, 7, 11, 17, 23, 37, 59, 67, 83, 101, 113, 167, 173, 199, 211, 227, 241, 251, 271, 283, 307, 317, 367, 373, 401, 433, 457, 479, 569, 571, 593, 599, 607, 613, 643, 659, 691, 701, 719, 727, 743, 757, 769, 809, 821, 829, 839, 853, 877, 883, 919, 941, 977, 991, 997, 1019, 1031, 1049
Offset: 1

Views

Author

Joerg Arndt, Oct 02 2017

Keywords

Comments

Since g^3 = g + 1, we have g^4 = g^2 + g, g^5 = g^3 + g^2, g^6 = g^4 + g^3, ..., g^(k+3) = g^(k+1) + g^k. Hence using g and g^2 we can compute all powers of the primitive root similar to A003147, where we have g^(k+2) = g^(k+1) + g^k (see the Shanks reference).

Crossrefs

Cf. A003147 (primitive root g such that g^2 = g + 1 mod p).
Cf. A293201 (primitive root g such that g^3 = g^2 + g + 1 mod p).
Cf. A104217.

Programs

  • Maple
    filter:= proc(p) local x,r;
      if not isprime(p) then return false fi;
      for r in map(t -> rhs(op(t)), [msolve(x^3-x-1,p)]) do
        if numtheory:-order(r,p) = p-1 then return true fi
      od;
      false
    end proc:
    select(filter, [seq(i,i=3..2000,2)]); # Robert Israel, Oct 02 2017
  • Mathematica
    selQ[p_] := AnyTrue[PrimitiveRootList[p], Mod[#^3 - # - 1, p] == 0&];
    Select[Prime[Range[200]], selQ] (* Jean-François Alcover, Jul 29 2020 *)
  • PARI
    Z(r,p)=znorder(Mod(r,p))==p-1;  \\ whether r is a primitive root mod p
    Y(p)=for(r=2,p-2,if( Z(r,p) && Mod(r^3-r-1,p)==0 , return(1))); 0; \\ test p
    forprime(p=2,10^3,if(Y(p),print1(p,", ")) );