This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293208 #12 Oct 05 2017 09:54:08 %S A293208 0,0,-2,-2,-1,-1,-4,-4,-2,-2,-3,-3,1,1,-1,-1,0,0,-3,-3,1,1,0,0,2,2,-2, %T A293208 -2,-1,-1,-6,-6,-4,-4,-5,-5,1,1,0,0,2,2,-7,-7,-6,-6,-8,-8,3,3,2,2,4,4, %U A293208 1,1,2,2,-2,-2,-1,-1,-3,-3,0,0,-1,-1,2,2,-2,-2,3,3 %N A293208 Let b be the lexicographically earliest sequence of positive terms such that the function f defined by f(n) = Sum_{k=1..n} (i^k * b(k)) for any n >= 0 is injective (where i denotes the imaginary unit), and b(n) != b(n+1) and b() != b(n+2) for any n > 0; a(n) = real part of f(n). %C A293208 See A293207 for the corresponding sequence b, and additional comments. %H A293208 Rémy Sigrist, <a href="/A293208/b293208.txt">Table of n, a(n) for n = 0..59999</a> %H A293208 Rémy Sigrist, <a href="/A293208/a293208.gp.txt">PARI program for A293208</a> %e A293208 f(0) = 0, and a(0) = 0. %e A293208 f(2) = f(1) + (i^1) * A293207(1) = 0 + (i) * 1 = i, and a(1) = 0. %e A293208 f(3) = f(2) + (i^2) * A293207(2) = i + (-1) * 2 = -2 + i, and a(2) = -2. %e A293208 f(4) = f(3) + (i^3) * A293207(3) = -2 + i + (-i) * 3 = -2 - 2*i, and a(3) = -2. %e A293208 f(5) = f(4) + (i^4) * A293207(4) = -2 - 2*i + (1) * 1 = -1 - 2*i, and a(4) = -1. %e A293208 f(6) = f(5) + (i^5) * A293207(5) = -1 - 2*i + (i) * 2 = -1, and a(5) = -1. %e A293208 f(7) = f(6) + (i^6) * A293207(6) = -1 + (-1) * 3 = -4, and a(6) = -4. %e A293208 f(8) = f(7) + (i^7) * A293207(7) = -4 + (-i) * 1 = -4 - i, and a(7) = -4. %e A293208 f(9) = f(8) + (i^8) * A293207(8) = -4 - i + (1) * 2 = -2 - i, and a(8) = -2. %e A293208 f(10) = f(9) + (i^9) * A293207(9) = -2 - i + (i) * 3 = -2 + 2*i, and a(9) = -2. %e A293208 f(11) = f(10) + (i^10) * A293207(10) = -2 + 2*i + (-1) * 1 = -3 + 2*i, and a(10) = -3. %o A293208 (PARI) See Links section. %Y A293208 Cf. A293207. %K A293208 sign,look %O A293208 0,3 %A A293208 _Rémy Sigrist_, Oct 02 2017