cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293213 Primes p with phi(p-1) a primitive root modulo p, where phi(.) is Euler's totient function (A000010).

Original entry on oeis.org

2, 5, 23, 43, 47, 67, 101, 149, 167, 211, 229, 263, 269, 281, 349, 353, 359, 383, 389, 421, 431, 449, 461, 479, 499, 503, 509, 521, 661, 691, 709, 719, 739, 743, 829, 839, 859, 863, 883, 887, 907, 941, 953, 971, 983, 991, 1031, 1087, 1103, 1109, 1163, 1181, 1229, 1237, 1279, 1291, 1319, 1327, 1367, 1373
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 02 2017

Keywords

Comments

It is well known that for any prime p the number of distinct primitive roots modulo p among 1,...,p-1 is phi(p-1).
Conjecture: The sequence contains infinitely many terms. Moreover, the number of primes p <= x with phi(p-1) a primitive root modulo p is asymptotically equivalent to c*x/(log x) as x tends to the infinity, where c is a constant with 0.36 < c < 0.37.

Examples

			a(2) = 5 since phi(5-1) = 2 is a primitive root modulo the prime 5.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=p[n]=Prime[n];
    n=0;Do[Do[If[Mod[EulerPhi[p[k]-1]^(Part[Divisors[p[k]-1],i])-1,p[k]]==0,Goto[aa]],{i,1,Length[Divisors[p[k]-1]]-1}];
    n=n+1;Print[n," ",p[k]];Label[aa],{k,1,220}]