A293213 Primes p with phi(p-1) a primitive root modulo p, where phi(.) is Euler's totient function (A000010).
2, 5, 23, 43, 47, 67, 101, 149, 167, 211, 229, 263, 269, 281, 349, 353, 359, 383, 389, 421, 431, 449, 461, 479, 499, 503, 509, 521, 661, 691, 709, 719, 739, 743, 829, 839, 859, 863, 883, 887, 907, 941, 953, 971, 983, 991, 1031, 1087, 1103, 1109, 1163, 1181, 1229, 1237, 1279, 1291, 1319, 1327, 1367, 1373
Offset: 1
Keywords
Examples
a(2) = 5 since phi(5-1) = 2 is a primitive root modulo the prime 5.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, New observations on primitive roots modulo primes, arXiv:1405.0290 [math.NT], 2014.
Programs
-
Mathematica
p[n_]:=p[n]=Prime[n]; n=0;Do[Do[If[Mod[EulerPhi[p[k]-1]^(Part[Divisors[p[k]-1],i])-1,p[k]]==0,Goto[aa]],{i,1,Length[Divisors[p[k]-1]]-1}]; n=n+1;Print[n," ",p[k]];Label[aa],{k,1,220}]
Comments