cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293252 Numbers k such that k = x + y, k' = x' + y' and k'' = x'' + y'', where k' and k'' are the first and second arithmetic derivatives of k.

Original entry on oeis.org

3, 778, 1331, 1575, 1589, 3111, 5368, 14060, 17649, 17714, 23232, 33813, 34353, 36234, 52936, 53391, 66375, 74544, 80938, 88945, 93475, 94905, 97470, 98434, 156816, 180804, 207754, 229502, 238830, 267120, 274065, 357318, 367921, 400500, 406700, 411872, 418037
Offset: 1

Views

Author

Paolo P. Lava, Oct 04 2017

Keywords

Comments

A226779(n) + 1 are terms of the sequence: for these numbers the relation stands for any following derivative because n = 1 + (n-1), n' = 0 + (n-1)' and n' = (n-1)' by definition. Apart 3, no other prime p can be in the sequence because p = x + y implies p' = 1 = x' + y' that is impossible (for 3 we have 3 = 1 + 2 and 3' = 1 = 1' + 2' = 0 + 1). Similarly, x and y cannot be both primes.
Is there any number that admits two or more different partitions?

Examples

			1331 = 198 + 1133, 1331' = 363 = 198' + 1133' = 249 + 114, 1331'' = 187 = 198'' + 1133'' = 86 + 101.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,c,k,n,p; for n from 1 to q do
    for k from 1 to trunc(n/2) do a:=k*add(op(2,p)/op(1,p),p=ifactors(k)[2]);
    b:=(n-k)*add(op(2,p)/op(1,p),p=ifactors(n-k)[2]); c:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); if c=a+b then a:=a*add(op(2,p)/op(1,p),p=ifactors(a)[2]); b:=b*add(op(2,p)/op(1,p),p=ifactors(b)[2]); c:=c*add(op(2,p)/op(1,p),p=ifactors(c)[2]);
    if c=a+b then print(n); break; fi; fi; od; od; end: P(10^5);
  • Mathematica
    f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger@ Abs@ n]]; Select[Range[2000], Function[k, Count[IntegerPartitions[k, {2}], ?(And[f@ k == f@ #1 + f@ #2, Nest[f, k, 2] == Nest[f, #1, 2] + Nest[f, #2, 2]] & @@ # &)] > 0]] (* _Michael De Vlieger, Oct 08 2017 *)

Extensions

a(25)-a(37) from Giovanni Resta, Oct 05 2017