A293252 Numbers k such that k = x + y, k' = x' + y' and k'' = x'' + y'', where k' and k'' are the first and second arithmetic derivatives of k.
3, 778, 1331, 1575, 1589, 3111, 5368, 14060, 17649, 17714, 23232, 33813, 34353, 36234, 52936, 53391, 66375, 74544, 80938, 88945, 93475, 94905, 97470, 98434, 156816, 180804, 207754, 229502, 238830, 267120, 274065, 357318, 367921, 400500, 406700, 411872, 418037
Offset: 1
Keywords
Examples
1331 = 198 + 1133, 1331' = 363 = 198' + 1133' = 249 + 114, 1331'' = 187 = 198'' + 1133'' = 86 + 101.
Links
- Paolo P. Lava, List of k, x, and y
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,c,k,n,p; for n from 1 to q do for k from 1 to trunc(n/2) do a:=k*add(op(2,p)/op(1,p),p=ifactors(k)[2]); b:=(n-k)*add(op(2,p)/op(1,p),p=ifactors(n-k)[2]); c:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); if c=a+b then a:=a*add(op(2,p)/op(1,p),p=ifactors(a)[2]); b:=b*add(op(2,p)/op(1,p),p=ifactors(b)[2]); c:=c*add(op(2,p)/op(1,p),p=ifactors(c)[2]); if c=a+b then print(n); break; fi; fi; od; od; end: P(10^5);
-
Mathematica
f[n_] := If[Abs@ n < 2, 0, n Total[#2/#1 & @@@ FactorInteger@ Abs@ n]]; Select[Range[2000], Function[k, Count[IntegerPartitions[k, {2}], ?(And[f@ k == f@ #1 + f@ #2, Nest[f, k, 2] == Nest[f, #1, 2] + Nest[f, #2, 2]] & @@ # &)] > 0]] (* _Michael De Vlieger, Oct 08 2017 *)
Extensions
a(25)-a(37) from Giovanni Resta, Oct 05 2017
Comments