This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293283 #22 Oct 08 2017 13:15:01 %S A293283 6,9,18,40,42,68,75,90,99,105,122,126,130,174,192,196,225,251,257,288, %T A293283 315,325,330,350,405,490,499,504,516,528,546,550,576,614,651,665,684, %U A293283 726,735,744,849,882,900,920,936,974,1025,1032,1036,1107,1140,1183,1200 %N A293283 Numbers n such that n^2 = a^2 + b^5 for positive integers a b and n. %C A293283 For n > 0, k = (n + 1)(2n + 1)^2 is a term in this sequence, because k^2 = (n * (2n + 1)^2)^2 + (2n + 1)^5. Examples: 18, 75, 196, 405, 726, 1183. %C A293283 When z^2 = x^2 + y^2 (i.e., z = A009003(n)), (z * y^4)^2 = (x * y^4)^2 + (y^2)^5. Thus z * y^4 is a term in this sequence. For example, 1200. More generally, for positive integer i, j and k, x^(5i - 5) * y^(5j - 1) * z^(5k - 5) is in this sequence. %C A293283 When z^2 = x^2 + y^3 (i.e., z = A070745(n)), (z * y)^2 = (x * y)^2 + y^5. Thus z * y is in this sequence. E.g. 6, 18, 40, ... . More generally, for positive integer i, j and k, x^(5i - 5) * y^(5j - 4) * z^(5k - 4) is in this sequence. %C A293283 When z^2 = x^2 + y^4 (i.e., z = A271576(n)), (z * y^3)^2 = (x * y^3)^2 + (y^2)^5. Thus z * y^3 is also in this sequence. E.g. 40, 405, 1107, ... . More generally, for positive integer i, j and k, x^(5i - 5) * y^(5j - 2) * z^(5k - 4) is in this sequence. %H A293283 Chai Wah Wu, <a href="/A293283/b293283.txt">Table of n, a(n) for n = 1..10000</a> %e A293283 6^2 = 2^2 + 2^5. %e A293283 9^2 = 7^2 + 2^5. %t A293283 c[n_]: = Count[n^2 - Range[(n^2 - 1)^(1/5)]^5, _?(IntegerQ[Sqrt[#]] &)] > 0; %t A293283 Select[Range[1200], c] %o A293283 (PARI) isok(n) = for (k=1, n-1, if (ispower(n^2-k^2, 5), return (1));); return (0); \\ _Michel Marcus_, Oct 06 2017 %Y A293283 Cf. A009003, A070067, A070745, A228946, A271576, A274035. %K A293283 nonn %O A293283 1,1 %A A293283 _XU Pingya_, Oct 04 2017