cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293286 a(n) = A181544(2n, 2n-1).

This page as a plain text file.
%I A293286 #14 Mar 17 2020 12:09:27
%S A293286 20,8464,4050864,2116980800,1173644492800,678353946298560,
%T A293286 404352269157205152,246796318508780847360,153477802845690943118400,
%U A293286 96903346351876187722368000,61954834924471706682462940800,40029904663914104968204952365824,26096917229103772343967114415006304
%N A293286 a(n) = A181544(2n, 2n-1).
%H A293286 David J. Gross and Vladimir Rosenhaus, <a href="https://arxiv.org/abs/1702.08016">The Bulk Dual of SYK: Cubic Couplings</a>, arXiv:1702.08016 [hep-th], 2017, p. 33.
%t A293286 t[n_, k_] := SeriesCoefficient[Sum[Binomial[n + j, j]^3 x^j, {j, 0, n + k}] (1 - x)^(3n + 1), {x, 0, k}];
%t A293286 a[n_] := t[2n, 2n - 1];
%t A293286 Array[a, 13] (* _Jean-François Alcover_, Feb 14 2019 *)
%o A293286 (Sage)
%o A293286 def a(n) :
%o A293286     R.<x> = QQ[]; p = 2*n; q = 2*n-1
%o A293286     return ((1-x)^(3*p+1) * sum(binomial(p+r,r)^3 * x^r for r in [0..p+q]))[q]
%K A293286 nonn
%O A293286 1,1
%A A293286 _Eric M. Schmidt_, Oct 04 2017