cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293291 Carmichael numbers m having a Fermat prime (A019434) factor such that A002322(m) = 2^k * p^2, where k is an integer and p is an odd prime.

This page as a plain text file.
%I A293291 #8 Aug 27 2021 01:47:15
%S A293291 825265,1210178305,11113519105,230864201601,772350315265,
%T A293291 1540032424705,204855497662465,453644962192318465,770522162068767745,
%U A293291 3070111619849131585,44428201205269571987560724263876473913345
%N A293291 Carmichael numbers m having a Fermat prime (A019434) factor such that A002322(m) = 2^k * p^2, where k is an integer and p is an odd prime.
%C A293291 Tsumura (2017) proved that there are no other such Carmichael numbers if there are only five Fermat primes.
%C A293291 The prime p happens to equal 3 or 5 in all cases.
%H A293291 Y. Tsumura, <a href="https://arxiv.org/abs/1710.01321">On the finiteness of Carmichael numbers with Fermat factors and L = 2^α P^2</a>, arXiv:1710.01321 [math.NT], 2017.
%Y A293291 Cf. A002997, A214428.
%K A293291 nonn
%O A293291 1,1
%A A293291 _Max Alekseyev_, Oct 05 2017