cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A290268 Number of terms in the fully expanded n-th derivative of x^(x^2).

Original entry on oeis.org

1, 2, 5, 8, 13, 18, 25, 31, 41, 49, 61, 71, 85, 97, 113, 126, 145, 160, 181, 198, 221, 240, 265, 285, 313, 335, 365, 389, 421, 447, 481, 508, 545, 574, 613, 644, 685, 718, 761, 795, 841, 877, 925, 963, 1013, 1053, 1105, 1146, 1201, 1244, 1301, 1346, 1405, 1452
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 06 2017

Keywords

Examples

			For n = 2, the 2nd derivative of x^(x^2) is 3*x^(x^2) + 2*x^(x^2)*log(x) + x^(x^2+2) + 4*x^(x^2+2)*log(x) + 4*x^(x^2+2)*log^2(x), so a(2) = 5.
		

Crossrefs

Programs

  • Maple
    a := n -> `if`(n=0, 1, nops(expand(diff(x^(x^2), x$n)))):
    seq(a(n), n = 0..30); # Peter Luschny, Oct 08 2017
  • Mathematica
    Join[{1}, Length /@ Rest[NestList[Expand[D[#, x]] &, x^x^2, 53]]]
    (* Use it only to check the conjecture, not to compute the values: *)
    LinearRecurrence[{0,2,0,-1,0,0,0,1,0,-2,0,1}, {1,2,5,8,13,18,25,31,41,49,61,71}, 54] (* Peter Luschny, Oct 09 2017 *)

Formula

Conjectured g.f.: (1 + x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + x^7 + 2*x^8 + x^9)/((1 - x)*(1 - x^2)*(1 - x^8)).
Conjecture: a(n) = (8*n^2 + 15*n + 14 + (n + 2)*(-1)^n + (2 - 4*sqrt(2)*sin(Pi*n/4))*sin(Pi*n/2))/16.
From Peter Luschny, Oct 09 2017: (Start) Assuming the conjecture:
a(n) = n^2/2 + n + 1 - (n mod 2)*(1/2 + floor((n + 1)/8)).
a(2*n) = A001844(n) and a(2*n + 1) = A293296(n + 1).
Signature of the linear recurrence: {0, 2, 0, -1, 0, 0, 0, 1, 0, -2, 0, 1}. (End)
Showing 1-1 of 1 results.