This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293298 #15 Feb 16 2025 08:33:51 %S A293298 1,0,1,0,1,-2,0,1,-5,2,0,1,-10,5,0,1,-19,1,11,0,1,-36,-46,84,19,0,1, %T A293298 -69,-272,358,393,29,0,1,-134,-1149,916,4171,1322,41,0,1,-263,-4237, %U A293298 -191,31939,26255,3841,55,0,1,-520,-14536,-20192,200252,348848,130924,10280,71 %N A293298 Triangle read by rows, a generalization of the Eulerian numbers based on Nielsen's generalized polylogarithm (case m = 3). %C A293298 Based on A142249 by _Roger L. Bagula_ and _Gary W. Adamson_. %H A293298 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/NielsenGeneralizedPolylogarithm.html">Nielsen Generalized Polylogarithm</a>. %F A293298 Let p(n, m) = (m - 1)!*(1 - x)^n*PolyLog(-n, m, x) and P(n) the polynomial given by the expansion of p(n, m=3) after replacing log(1 - x) by 1. T(n, k) is the k-th coefficient of P(n). %e A293298 Triangle starts: %e A293298 {1} %e A293298 {0, 1} %e A293298 {0, 1, -2} %e A293298 {0, 1, -5, 2} %e A293298 {0, 1, -10, 5} %e A293298 {0, 1, -19, 1, 11} %e A293298 {0, 1, -36, -46, 84, 19} %e A293298 {0, 1, -69, -272, 358, 393, 29} %e A293298 {0, 1, -134, -1149, 916, 4171, 1322, 41} %e A293298 {0, 1, -263, -4237, -191, 31939, 26255, 3841, 55} %t A293298 npl[n_, m_] := (m-1)! (1 - x)^n PolyLog[-n, m, x]; %t A293298 A293298Row[0] := {1}; %t A293298 A293298Row[n_] := CoefficientList[FunctionExpand[npl[n, 3]], x] /. Log[1-x] -> 1; %t A293298 Table[A293298Row[n], {n, 0, 10}] // Flatten %Y A293298 A123125 (m=1), A142249 (m=2 with missing first column), this seq. (m=3). %K A293298 sign,tabl %O A293298 0,6 %A A293298 _Peter Luschny_, Oct 11 2017