cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293304 Expansion of Product_{k>=1} (1 + x^(2*k-1) + 2*x^(4*k-2)).

This page as a plain text file.
%I A293304 #4 Oct 05 2017 11:33:56
%S A293304 1,1,2,1,1,3,3,5,6,4,6,8,11,13,13,18,19,23,29,32,35,40,48,51,65,78,86,
%T A293304 96,102,121,142,162,179,199,220,251,289,323,359,395,450,499,562,631,
%U A293304 695,762,840,952,1055,1167,1292,1413,1557,1733,1903,2112,2323,2534
%N A293304 Expansion of Product_{k>=1} (1 + x^(2*k-1) + 2*x^(4*k-2)).
%H A293304 Vaclav Kotesovec, <a href="/A293304/b293304.txt">Table of n, a(n) for n = 0..2000</a>
%F A293304 a(n) ~ c^(1/4) * exp(sqrt(2*c*n)) / (2^(5/4) * sqrt(Pi) * n^(3/4)), where c = -polylog(2, -1/2 + I*sqrt(7)/2) - polylog(2, -1/2 - I*sqrt(7)/2) = 1.323865936864425754643630663383779192757247984691212163137...
%t A293304 nmax = 100; CoefficientList[Series[Product[(1 + x^(2*k-1) + 2*x^(4*k-2)), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A293304 Cf. A293072.
%K A293304 nonn
%O A293304 0,3
%A A293304 _Vaclav Kotesovec_, Oct 05 2017