This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293305 #23 Feb 21 2021 06:40:20 %S A293305 1,1,0,1,-1,0,1,-1,-1,0,1,-1,1,0,0,1,-1,1,0,0,0,1,-1,1,-3,0,1,0,1,-1, %T A293305 1,-3,0,-3,0,0,1,-1,1,-3,4,0,4,1,0,1,-1,1,-3,4,0,4,-3,0,0,1,-1,1,-3,4, %U A293305 -5,0,-3,4,0,0,1,-1,1,-3,4,-5,0,-7,-2,-2,0,0,1,-1,1 %N A293305 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} (1 + Sum_{j=1..k} (-1)^j*j*x^(j*i)). %H A293305 Seiichi Manyama, <a href="/A293305/b293305.txt">Antidiagonals n = 0..139, flattened</a> %e A293305 Square array begins: %e A293305 1, 1, 1, 1, 1, ... %e A293305 0, -1, -1, -1, -1, ... %e A293305 0, -1, 1, 1, 1, ... %e A293305 0, 0, 0, -3, -3, ... %e A293305 0, 0, 0, 0, 4, ... %e A293305 0, 1, -3, 0, 0, ... %t A293305 nmax = 12; %t A293305 col[k_] := col[k] = Product[1+Sum[(-1)^j*j*x^(i*j), {j, 1, k}], {i, 1, 2 nmax}] + O[x]^(2 nmax) // CoefficientList[#, x]&; %t A293305 A[n_, k_] := If[n == 0, 1, If[k == 0, 0, col[k][[n+1]]]]; %t A293305 Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Feb 21 2021 *) %Y A293305 Columns k=0..2 give A000007, A010815, A293072. %Y A293305 Rows n=0 gives A000012. %Y A293305 Main diagonal gives A293306. %Y A293305 Cf. A293071, A293307. %K A293305 sign,tabl,look %O A293305 0,25 %A A293305 _Seiichi Manyama_, Oct 05 2017