This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293311 #11 Feb 16 2025 08:33:51 %S A293311 1,2,1,3,3,1,4,6,4,1,5,10,11,7,1,6,15,23,26,11,1,7,21,42,70,57,18,1,8, %T A293311 28,69,155,197,129,29,1,9,36,106,301,533,571,289,47,1,10,45,154,532, %U A293311 1223,1884,1640,650,76,1,11,55,215,876,2494,5103,6604,4726,1460,123,1 %N A293311 Rectangular array read by antidiagonals: A(n,k) = number of magic labelings of the graph LOOP X C_n (see comments) having magic sum k, n >= 1, k >= 0. %C A293311 The graph LOOP X C_n is constructed by attaching a loop to each vertex of the cycle graph C_n. %C A293311 The generating function for row n of this array was found via the "Omega" package for Mathematica authored by Axel Riese. The package can be downloaded from the link given in the article by G. E. Andrews, et al., and is needed for the Mathematica program below. %H A293311 G. E. Andrews, P. Paule and A. Riese, <a href="http://www.risc.uni-linz.ac.at/research/combinat/risc/publications/#ppaule">MacMahon's partition analysis III. The Omega package</a>. %H A293311 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CycleGraph.html">Cycle Graph</a>. %H A293311 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Graph Loop.html">Graph Loop</a>. %e A293311 Array begins: %e A293311 . 1 2 3 4 5 6 7 8 9 10 %e A293311 . 1 3 6 10 15 21 28 36 45 55 %e A293311 . 1 4 11 23 42 69 106 154 215 290 %e A293311 . 1 7 26 70 155 301 532 876 1365 2035 %e A293311 . 1 11 57 197 533 1223 2494 4654 8105 13355 %e A293311 . 1 18 129 571 1884 5103 11998 25362 49347 89848 %e A293311 . 1 29 289 1640 6604 21122 57271 137155 298184 599954 %e A293311 . 1 47 650 4726 23219 87677 274132 743724 1806597 4016683 %e A293311 . 1 76 1460 13604 81555 363606 1310974 4029310 10936124 26868719 %e A293311 . 1 123 3281 39175 286555 1508401 6271378 21836366 66220705 179784715 %t A293311 (* Run this first: *) %t A293311 << Omega.m; %t A293311 (* Then run the following in a different cell: *) %t A293311 nmax = 11; Do[cond = {}; Do[If[n == 1, AppendTo[cond, Subscript[a, 1] + Subscript[a, 2] == Subscript[a, 3]]; Break[], AppendTo[cond, If[j == n, Subscript[a, 2*j - 1] + Subscript[a, 2*j] + Subscript[a, 1] == Subscript[a, 2*n + 1], Subscript[a, 2*j - 1] + Subscript[a, 2*j] + Subscript[a, 2*j + 1] == Subscript[a, 2*n + 1]]]], {j, n}]; f = OEqSum[Product[Subscript[x, i]^Subscript[a, i], {i, 2*n + 1}], cond, \[Lambda]][[1]] /. {Subscript[x, 2*n + 1] -> z} /. {Subscript[x, _] -> 1}; Do[f = OEqR[f, Subscript[\[Lambda], k]], {k, Length[cond]}]; Do[a293311[n, k] = Coefficient[Series[f, {z, 0, nmax - 1}], z, k], {k, 0, nmax - 1}], {n, nmax}]; %t A293311 (* Array: *) %t A293311 Grid[Table[a293311[n, k], {n, nmax}, {k, 0, nmax - 1}]] %t A293311 (* Array antidiagonals flattened (gives this sequence): *) %t A293311 Flatten[Table[a293311[n, k - n], {k, 11}, {n, k}]] %Y A293311 Cf. A293311. %Y A293311 Cf. A000027, A000217, A019298, A006325, A244497, A244879, A244873, A244880, A293310, A293309 (rows 1..10). %K A293311 nonn,tabl %O A293311 1,2 %A A293311 _L. Edson Jeffery_, Oct 06 2017