cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293312 Rectangular array read by antidiagonals: A(n,k) = tr((M_n)^k), k >= 0, where M_n is the n X n matrix M_1 = {{1}}, M_n = {{0,...,0,1},{0,...,0,1,1},...,{0,1,...,1},{1,...,1}}, n > 1, and tr(.) is the trace.

This page as a plain text file.
%I A293312 #13 Oct 13 2017 06:07:56
%S A293312 1,1,2,1,1,3,1,3,2,4,1,4,6,2,5,1,7,11,10,3,6,1,11,26,23,15,3,7,1,18,
%T A293312 57,70,42,21,4,8,1,29,129,197,155,69,28,4,9,1,47,289,571,533,301,106,
%U A293312 36,5,10,1,76,650,1640,1884,1223,532,154,45,5,11
%N A293312 Rectangular array read by antidiagonals: A(n,k) = tr((M_n)^k), k >= 0, where M_n is the n X n matrix M_1 = {{1}}, M_n = {{0,...,0,1},{0,...,0,1,1},...,{0,1,...,1},{1,...,1}}, n > 1, and tr(.) is the trace.
%C A293312 Conjecture: For all n >= 1, for all k >= 2, A(n, k) = A293311(k, n); i.e., A(n, k) = number of magic labelings of the graph LOOP X C_k with magic sum n - 1.
%F A293312 Let S(0, x) = 1, S(1, x) = x, S(k, x) = x*S(k - 1, x) - S(k - 2, x) (the S-polynomials of _Wolfdieter Lang_) and c(n, j) = 2*(-1)^(j - 1)*cos(j*Pi/(2*n + 1)). Then A(n, k) = Sum_{j=1..n} S(n - 1, c(n, j))^(k), n >= 1, k >= 0.
%e A293312 Array begins:
%e A293312 .   1 1  1   1    1     1      1       1       1        1         1
%e A293312 .   2 1  3   4    7    11     18      29      47       76       123
%e A293312 .   3 2  6  11   26    57    129     289     650     1460      3281
%e A293312 .   4 2 10  23   70   197    571    1640    4726    13604     39175
%e A293312 .   5 3 15  42  155   533   1884    6604   23219    81555    286555
%e A293312 .   6 3 21  69  301  1223   5103   21122   87677   363606   1508401
%e A293312 .   7 4 28 106  532  2494  11998   57271  274132  1310974   6271378
%e A293312 .   8 4 36 154  876  4654  25362  137155  743724  4029310  21836366
%e A293312 .   9 5 45 215 1365  8105  49347  298184 1806597 10936124  66220705
%e A293312 .  10 5 55 290 2035 13355  89848  599954 4016683 26868719 179784715
%e A293312 .  11 6 66 381 2926 21031 154935 1132942 8306078 60843972 445824731
%e A293312 .  ...
%t A293312 s[0, x_] := 1; s[1, x_] := x; s[k_, x_] := x*s[k - 1, x] - s[k - 2, x]; c[n_, j_] := 2 (-1)^(j - 1) Cos[j*Pi/(2 n + 1)]; a[n_, k_] := Round[Sum[s[n - 1, c[n, j]]^(k), {j, n}]];
%t A293312 (* Array: *)
%t A293312 Grid[Table[a[n, k], {n, 11}, {k, 0, 10}]]
%t A293312 (* Array antidiagonals flattened (gives this sequence): *)
%t A293312 Flatten[Table[a[n, k - n], {k, 11}, {n, k}]]
%Y A293312 Cf. A293311.
%Y A293312 Cf. A000012, A000032, A274975, A188128, A189237 (rows 1..5).
%Y A293312 Cf. A000027, A000217, A019298, A006325, A244497, A244879, A244873, A244880, A293310, A293309 (columns k = 0,2..10 (conjectured)).
%K A293312 nonn,tabl
%O A293312 1,3
%A A293312 _L. Edson Jeffery_, Oct 10 2017