A293076
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 6, 13, 24, 44, 76, 129, 215, 355, 582, 951, 1548, 2515, 4080, 6613, 10712, 17345, 28078, 45445, 73546, 119016, 192588, 311631, 504247, 815907, 1320184, 2136122, 3456338, 5592493, 9048865, 14641393, 23690294, 38331724, 62022056, 100353819, 162375915
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(0) = 3 + 1 + 2 = 6;
a(3) = a(2) + a(1) + b(1) = 6 + 3 + 4 = 13.
Complement: (b(n)) = (2,4,5,7,8,9,10,11,12,14,...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A293076 *)
Table[b[n], {n, 0, 10}]
A293321
The integer k that minimizes |k/2^n - tau^2|, where tau = (1+sqrt(5))/2 = golden ratio.
Original entry on oeis.org
3, 5, 10, 21, 42, 84, 168, 335, 670, 1340, 2681, 5362, 10723, 21447, 42894, 85788, 171575, 343151, 686302, 1372604, 2745208, 5490415, 10980830, 21961661, 43923322, 87846643, 175693287, 351386574, 702773148, 1405546295, 2811092590, 5622185181, 11244370361
Offset: 0
-
z = 120; r = 1+GoldenRatio;
Table[Floor[r*2^n], {n, 0, z}]; (* A293319 *)
Table[Ceiling[r*2^n], {n, 0, z}]; (* A293320 *)
Table[Round[r*2^n], {n, 0, z}]; (* A293321 *)
-
a(n) = (2^n*(3+sqrt(5))+1)\2; \\ Altug Alkan, Oct 08 2017
A293057
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + 2, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 8, 17, 32, 57, 98, 166, 276, 455, 745, 1215, 1976, 3208, 5202, 8430, 13653, 22105, 35781, 57910, 93716, 151652, 245395, 397075, 642499, 1039604, 1682134, 2721770, 4403937, 7125742, 11529715, 18655494, 30185247, 48840780, 79026067, 127866888, 206892997
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(0) + 2 = 8;
a(3) = a(2) + a(1) + b(1) + 1 = 17.
Complement: (b(n)) = (2,4,5,6,7,9,10,11,12,13,14,15,16,18,...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + 2;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A293316 *)
Table[b[n], {n, 0, 10}]
A293058
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + 3, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
Original entry on oeis.org
1, 3, 9, 19, 36, 64, 110, 185, 308, 507, 830, 1353, 2200, 3571, 5790, 9381, 15192, 24596, 39812, 64433, 104271, 168731, 273030, 441790, 714850, 1156671, 1871553, 3028257, 4899844, 7928136, 12828016, 20756189, 33584243, 54340472, 87924756, 142265270
Offset: 0
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(0) + 3 = 9;
a(3) = a(2) + a(1) + b(1) + 1 = 19.
Complement: (b(n)) = (2,4,5,6,7,8,10,11,12,13,14,...)
-
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + 3;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A293316 *)
Table[b[n], {n, 0, 10}]
Showing 1-4 of 4 results.
Comments