cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A293076 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.

Original entry on oeis.org

1, 3, 6, 13, 24, 44, 76, 129, 215, 355, 582, 951, 1548, 2515, 4080, 6613, 10712, 17345, 28078, 45445, 73546, 119016, 192588, 311631, 504247, 815907, 1320184, 2136122, 3456338, 5592493, 9048865, 14641393, 23690294, 38331724, 62022056, 100353819, 162375915
Offset: 0

Views

Author

Clark Kimberling, Oct 28 2017

Keywords

Comments

The complementary sequences a() and b() are uniquely determined by the titular equation and initial values, which for each sequence in the following guide are a(0) = 1, a(2) = 3, b(0) = 2, b(1) = 4:
A293076: a(n) = a(n-1) + a(n-2) + b(n-2)
A293316: a(n) = a(n-1) + a(n-2) + b(n-2) + 1
A293057: a(n) = a(n-1) + a(n-2) + b(n-2) + 2
A293058: a(n) = a(n-1) + a(n-2) + b(n-2) + 3
A293317: a(n) = a(n-1) + a(n-2) + b(n-2) - 1
A293349: a(n) = a(n-1) + a(n-2) + b(n-2) + n
A293350: a(n) = a(n-1) + a(n-2) + b(n-2) + 2*n
A293351: a(n) = a(n-1) + a(n-2) + b(n-2) + n - 1
A293357: a(n) = a(n-1) + a(n-2) + b(n-2) + n + 1
Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(0) = 3 + 1 + 2 = 6;
a(3) = a(2) + a(1) + b(1) = 6 + 3 + 4 = 13.
Complement: (b(n)) = (2,4,5,7,8,9,10,11,12,14,...)
		

Crossrefs

Cf. A001622 (golden ratio), A293358.

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2];
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A293076 *)
    Table[b[n], {n, 0, 10}]

Extensions

Comments corrected by Georg Fischer, Sep 23 2020

A293321 The integer k that minimizes |k/2^n - tau^2|, where tau = (1+sqrt(5))/2 = golden ratio.

Original entry on oeis.org

3, 5, 10, 21, 42, 84, 168, 335, 670, 1340, 2681, 5362, 10723, 21447, 42894, 85788, 171575, 343151, 686302, 1372604, 2745208, 5490415, 10980830, 21961661, 43923322, 87846643, 175693287, 351386574, 702773148, 1405546295, 2811092590, 5622185181, 11244370361
Offset: 0

Views

Author

Clark Kimberling, Oct 07 2017

Keywords

Crossrefs

Programs

  • Mathematica
    z = 120; r = 1+GoldenRatio;
    Table[Floor[r*2^n], {n, 0, z}];   (* A293319 *)
    Table[Ceiling[r*2^n], {n, 0, z}]; (* A293320 *)
    Table[Round[r*2^n], {n, 0, z}]; (* A293321 *)
  • PARI
    a(n) = (2^n*(3+sqrt(5))+1)\2; \\ Altug Alkan, Oct 08 2017

Formula

a(n) = floor(1/2 + r*2^n), where r = (3+sqrt(5))/2.
a(n) = A293319(n) if (fractional part of r*2^n) < 1/2, else a(n) = A293316(n).

A293057 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + 2, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.

Original entry on oeis.org

1, 3, 8, 17, 32, 57, 98, 166, 276, 455, 745, 1215, 1976, 3208, 5202, 8430, 13653, 22105, 35781, 57910, 93716, 151652, 245395, 397075, 642499, 1039604, 1682134, 2721770, 4403937, 7125742, 11529715, 18655494, 30185247, 48840780, 79026067, 127866888, 206892997
Offset: 0

Views

Author

Clark Kimberling, Oct 28 2017

Keywords

Comments

The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A293076 for a guide to related sequences.
Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2)  = a(1) + a(0) + b(0) + 2 = 8;
a(3) = a(2) + a(1) + b(1) + 1 = 17.
Complement: (b(n)) = (2,4,5,6,7,9,10,11,12,13,14,15,16,18,...)
		

Crossrefs

Cf. A001622 (golden ratio), A293076.

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + 2;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A293316 *)
    Table[b[n], {n, 0, 10}]

A293058 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + 3, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.

Original entry on oeis.org

1, 3, 9, 19, 36, 64, 110, 185, 308, 507, 830, 1353, 2200, 3571, 5790, 9381, 15192, 24596, 39812, 64433, 104271, 168731, 273030, 441790, 714850, 1156671, 1871553, 3028257, 4899844, 7928136, 12828016, 20756189, 33584243, 54340472, 87924756, 142265270
Offset: 0

Views

Author

Clark Kimberling, Oct 28 2017

Keywords

Comments

The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A293076 for a guide to related sequences.
Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio.

Examples

			a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2)  = a(1) + a(0) + b(0) + 3 = 9;
a(3) = a(2) + a(1) + b(1) + 1 = 19.
Complement: (b(n)) = (2,4,5,6,7,8,10,11,12,13,14,...)
		

Crossrefs

Cf. A001622 (golden ratio), A293076.

Programs

  • Mathematica
    mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
    a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
    a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + 3;
    b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
    Table[a[n], {n, 0, 40}]  (* A293316 *)
    Table[b[n], {n, 0, 10}]
Showing 1-4 of 4 results.