A293321 The integer k that minimizes |k/2^n - tau^2|, where tau = (1+sqrt(5))/2 = golden ratio.
3, 5, 10, 21, 42, 84, 168, 335, 670, 1340, 2681, 5362, 10723, 21447, 42894, 85788, 171575, 343151, 686302, 1372604, 2745208, 5490415, 10980830, 21961661, 43923322, 87846643, 175693287, 351386574, 702773148, 1405546295, 2811092590, 5622185181, 11244370361
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
z = 120; r = 1+GoldenRatio; Table[Floor[r*2^n], {n, 0, z}]; (* A293319 *) Table[Ceiling[r*2^n], {n, 0, z}]; (* A293320 *) Table[Round[r*2^n], {n, 0, z}]; (* A293321 *)
-
PARI
a(n) = (2^n*(3+sqrt(5))+1)\2; \\ Altug Alkan, Oct 08 2017