A293323 Least integer k such that k/2^n > 1/tau, where tau = (1+sqrt(5))/2 = golden ratio.
1, 2, 3, 5, 10, 20, 40, 80, 159, 317, 633, 1266, 2532, 5063, 10126, 20252, 40504, 81007, 162014, 324028, 648056, 1296112, 2592223, 5184445, 10368890, 20737780, 41475559, 82951118, 165902236, 331804472, 663608943, 1327217885, 2654435770, 5308871539
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
z = 120; r = -1+GoldenRatio; Table[Floor[r*2^n], {n, 0, z}]; (* A293322 *) Table[Ceiling[r*2^n], {n, 0, z}]; (* A293323 *) Table[Round[r*2^n], {n, 0, z}]; (* A293324 *)
-
PARI
a(n) = ceil(2^(n-1)*(sqrt(5)-1)); \\ Altug Alkan, Oct 08 2017
Formula
a(n) = ceiling(r*2^n), where r = (-1+sqrt(5))/2.
a(n) = A293322(n) + 1.