cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293344 a(n) = a(n-1) + a(n-3) + 2*a(n-5) - a(n-8) - a(n-10), n > 10.

Original entry on oeis.org

1, 1, 4, 5, 16, 22, 29, 45, 76, 126, 210, 338, 534, 869, 1414, 2301, 3741, 6052, 9805, 15910, 25820, 41900, 67966, 110226, 178791, 290044, 470524, 763285, 1238156, 2008452, 3258039, 5285117, 8573382, 13907463, 22560169, 36596300, 59365317, 96300513
Offset: 1

Views

Author

Eric M. Schmidt, Oct 12 2017

Keywords

Comments

For n >= 5, gives the dimensions of a certain class of error-correcting codes. [Cascudo, Theorem 6.2]

Crossrefs

Programs

  • Mathematica
    a = DifferenceRoot[Function[{a, n}, {a[n] + a[n+2] - 2*a[n+5] - a[n+7] - a[n+9] + a[n+10] == 0, a[1] == 1, a[2] == 1, a[3] == 4, a[4] == 5, a[5] == 16, a[6] == 22, a[7] == 29, a[8] == 45, a[9] == 76, a[10] == 126}]];
    Table[a[n], {n, 1, 38}] (* Jean-François Alcover, Feb 24 2019 *)
  • PARI
    Vec(x*(1 + 3*x^2 + 10*x^4 - 8*x^7 - 10*x^9) / (1 - x - x^3 - 2*x^5 + x^8 + x^10) + O(x^40)) \\ Colin Barker, Feb 24 2019

Formula

G.f.: x*(1 + 3*x^2 + 10*x^4 - 8*x^7 - 10*x^9) / (1 - x - x^3 - 2*x^5 + x^8 + x^10). - Colin Barker, Feb 24 2019