This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293357 #8 Nov 02 2017 09:19:59 %S A293357 1,3,9,20,39,71,124,211,354,586,963,1574,2564,4167,6762,10962,17759, %T A293357 28758,46557,75357,121958,197361,319367,516778,836197,1353029,2189282, %U A293357 3542369,5731711,9274142,15005917,24280125,39286110,63566305,102852487,166418866 %N A293357 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-2) + n +1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4. %C A293357 The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A293076 for a guide to related sequences. %C A293357 Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio. %e A293357 a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that %e A293357 a(2) = a(1) + a(0) + b(0) + 3 = 9; %e A293357 a(3) = a(2) + a(1) + b(1) + 4 = 20. %e A293357 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14,...) %t A293357 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A293357 a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; %t A293357 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 2] + n + 1; %t A293357 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A293357 Table[a[n], {n, 0, 40}] (* A293357 *) %t A293357 Table[b[n], {n, 0, 10}] %Y A293357 Cf. A001622 (golden ratio), A293076. %K A293357 nonn,easy %O A293357 0,2 %A A293357 _Clark Kimberling_, Oct 28 2017