This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293358 #8 Nov 02 2017 09:20:06 %S A293358 1,3,8,16,30,53,92,155,258,425,696,1135,1846,2998,4862,7879,12761, %T A293358 20661,33444,54128,87596,141749,229371,371147,600546,971722,1572299, %U A293358 2544053,4116385,6660472,10776892,17437400,28214329,45651767,73866135,119517942 %N A293358 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4. %C A293358 The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. The initial values of each sequence in the following guide are a(0) = 1, a(2) = 3, b(0) = 2, b(1) = 4: %C A293358 A293358: a(n) = a(n-1) + a(n-2) + b(n-1) %C A293358 A293406: a(n) = a(n-1) + a(n-2) + b(n-1) + 1 %C A293358 A293765: a(n) = a(n-1) + a(n-2) + b(n-1) + 2 %C A293358 A293766: a(n) = a(n-1) + a(n-2) + b(n-1) + 3 %C A293358 A293767: a(n) = a(n-1) + a(n-2) + b(n-1) - 1 %C A293358 A294365: a(n) = a(n-1) + a(n-2) + b(n-1) + n %C A293358 A294366: a(n) = a(n-1) + a(n-2) + b(n-1) + 2n %C A293358 A294367: a(n) = a(n-1) + a(n-2) + b(n-1) + n - 1 %C A293358 A294368: a(n) = a(n-1) + a(n-2) + b(n-1) + n + 1 %C A293358 Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio. %H A293358 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.pdf">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A293358 a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that %e A293358 a(2) = a(1) + a(0) + b(1) = 8; %e A293358 Complement: (b(n)) = (2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, ...) %t A293358 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A293358 a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; %t A293358 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1]; %t A293358 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A293358 Table[a[n], {n, 0, 40}] (* A293358 *) %t A293358 Table[b[n], {n, 0, 10}] %Y A293358 Cf. A001622 (golden ratio), A293076. %K A293358 nonn,easy %O A293358 0,2 %A A293358 _Clark Kimberling_, Oct 29 2017