This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293371 #8 Oct 11 2017 06:43:53 %S A293371 11481,352793,6170486,83317577,941895458,9595504513,89629486436, %T A293371 792794568624,6679198773576,54486400898447,431529096734274, %U A293371 3349089312506511,25507319202685313,191694475039884663,1422950411887109983,10467534744471771547,76364568808571920303 %N A293371 Number of partitions of n where each part i is marked with a word of length i over a septenary alphabet whose letters appear in alphabetical order and all seven letters occur at least once in the partition. %H A293371 Alois P. Heinz, <a href="/A293371/b293371.txt">Table of n, a(n) for n = 7..1000</a> %F A293371 a(n) ~ c * 7^n, where c = 3.519268129363442517546929108933080435102442778133731795486515352... - _Vaclav Kotesovec_, Oct 11 2017 %p A293371 b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A293371 b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1)))) %p A293371 end: %p A293371 a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(7): %p A293371 seq(a(n), n=7..30); %Y A293371 Column k=7 of A261719. %K A293371 nonn %O A293371 7,1 %A A293371 _Alois P. Heinz_, Oct 07 2017