This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293377 #17 Oct 08 2017 17:38:49 %S A293377 1,1,0,1,2,0,1,2,3,0,1,2,7,6,0,1,2,7,10,9,0,1,2,7,16,25,14,0,1,2,7,16, %T A293377 31,38,22,0,1,2,7,16,39,62,78,32,0,1,2,7,16,39,70,117,116,46,0,1,2,7, %U A293377 16,39,80,149,206,206,66,0,1,2,7,16,39,80,159,262,362 %N A293377 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*i))^2. %H A293377 Seiichi Manyama, <a href="/A293377/b293377.txt">Antidiagonals n = 0..139, flattened</a> %e A293377 Square array begins: %e A293377 1, 1, 1, 1, 1, ... %e A293377 0, 2, 2, 2, 2, ... %e A293377 0, 3, 7, 7, 7, ... %e A293377 0, 6, 10, 16, 16, ... %e A293377 0, 9, 25, 31, 39, ... %e A293377 0, 14, 38, 62, 70, ... %Y A293377 Columns k=0..1 give A000007, A022567. %Y A293377 Rows n=0 gives A000012. %Y A293377 Main diagonal gives A293378. %Y A293377 Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*i))^m: A290217 (m=-1), A290216 (m=1), this sequence (m=2). %K A293377 nonn,tabl %O A293377 0,5 %A A293377 _Seiichi Manyama_, Oct 07 2017