cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293378 Expansion of (eta(q^6)/(eta(q)*eta(q^2)*eta(q^3)))^2 in powers of q.

This page as a plain text file.
%I A293378 #18 Dec 11 2023 15:11:00
%S A293378 1,2,7,16,39,80,171,328,638,1168,2133,3744,6540,11092,18687,30816,
%T A293378 50421,81136,129582,204160,319340,493952,758781,1154624,1745748,
%U A293378 2617958,3902614,5776144,8501784,12434320,18092565,26175784,37689734,53989056,76993497,109284736
%N A293378 Expansion of (eta(q^6)/(eta(q)*eta(q^2)*eta(q^3)))^2 in powers of q.
%H A293378 Seiichi Manyama, <a href="/A293378/b293378.txt">Table of n, a(n) for n = 0..10000</a>
%F A293378 G.f.: Product_{k>0} ((1 - x^(6*k))/((1 - x^k)*(1 - x^(2*k))*(1 - x^(3*k))))^2.
%F A293378 a(n) ~ 5^(5/4) * exp(2*Pi*sqrt(5*n)/3) / (72 * sqrt(3) * n^(7/4)). - _Vaclav Kotesovec_, Oct 11 2017
%t A293378 nmax = 50; CoefficientList[Series[Product[((1 + x^(3*k))/((1 - x^k)*(1 - x^(2*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 11 2017 *)
%Y A293378 Cf. A077285, A293377.
%K A293378 nonn
%O A293378 0,2
%A A293378 _Seiichi Manyama_, Oct 07 2017