This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293382 #20 Oct 14 2017 05:49:11 %S A293382 3,9,3,0,9,7,4,9,0,7,0,0,0,8,0,5,7,6,5,4,5,3,5,4,6,1,9,8,7,3,1,2,0,8, %T A293382 4,5,0,2,1,3,4,1,5,7,5,0,0,6,7,5,5,7,1,0,3,2,1,9,9,0,3,0,8,0,3,2,4,7, %U A293382 8,8,6,7,5,3,5,7,0,7,5,7,7,4,9,8,8,6,6,3,5,5,7,6,2,2,2,4,2,3,6,9,9,7,9,5,6,4,8,7,5,4,4,9,9,3,7,8,5,0,5,9 %N A293382 Decimal expansion of Sum_{n>=1} -(-1)^n * 2^n / (n * (2*3^n - 1)^n). %C A293382 This constant plus A293381 equals log(2), due to the identity: %C A293382 Sum_{n=-oo..+oo, n<>0} (x - y^n)^n / n = -log(1-x), here x = 1/2, y = 1/3. %F A293382 Constant: Sum_{n>=1} -(-1)^n * 2^n / (n * (2*3^n - 1)^n). %F A293382 Constant: log(2) - Sum_{n>=1} (3^n - 2)^n / (n * 2^n * 3^(n^2)). %e A293382 Constant t = 0.3930974907000805765453546198731208450213415750067557103219903... %e A293382 such that %e A293382 t = 2/(2*3-1) - 2^2/(2*(2*3^2-1)^2) + 2^3/(3*(2*3^3-1)^3) - 2^4/(4*(2*3^4-1)^4) + 2^5/(5*(2*3^5-1)^5) - 2^6/(6*(2*3^6-1)^6) + 2^7/(7*(2*3^7-1)^7) - 2^8/(8*(2*3^8-1)^8) +...+ -(-1)^n * 2^n / (n * (2*3^n - 1)^n) +... %e A293382 More explicitly, %e A293382 t = 2/5 - 4/(2*17^2) + 8/(3*53^3) - 16/(4*161^4) + 32/(5*485^5) - 64/(6*1457^6) + 128/(7*4373^7) - 256/(8*13121^8) + 512/(9*39365^9) - 1024/(10*118097^10) +... %e A293382 Also, %e A293382 log(2) - t = (3 - 2)/(1*2*3) + (3^2 - 2)^2/(2*2^2*3^4) + (3^3 - 2)^3/(3*2^3*3^9) + (3^4 - 2)^4/(4*2^4*3^16) + (3^5 - 2)^5/(5*2^5*3^25) + (3^6 - 2)^6/(6*2^6*3^36) + (3^7 - 2)^7/(7*2^7*3^49) +...+ (3^n - 2)^n / (n * 2^n * 3^(n^2)) +... %o A293382 (PARI) {t = suminf(n=1, -1.*(-1)^n * 2^n / (n * (2*3^n - 1)^n) )} %o A293382 for(n=1,120, print1(floor(10^n*t)%10,", ")) %Y A293382 Cf. A002162, A293381, A292178, A292179, A293383, A293384. %K A293382 nonn,cons %O A293382 0,1 %A A293382 _Paul D. Hanna_, Oct 13 2017