This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293386 #17 Oct 09 2017 00:02:22 %S A293386 1,1,0,1,-2,0,1,-2,1,0,1,-2,-3,-2,0,1,-2,-3,10,4,0,1,-2,-3,4,-4,-4,0, %T A293386 1,-2,-3,4,14,-20,5,0,1,-2,-3,4,6,-8,41,-6,0,1,-2,-3,4,6,16,-46,2,9,0, %U A293386 1,-2,-3,4,6,6,-30,14,-111,-12,0,1,-2,-3,4,6,6,0,-58 %N A293386 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of g.f. Product_{i>0} 1/(1 + Sum_{j=1..k} j*x^(j*i))^2. %H A293386 Seiichi Manyama, <a href="/A293386/b293386.txt">Antidiagonals n = 0..139, flattened</a> %e A293386 Square array begins: %e A293386 1, 1, 1, 1, 1, ... %e A293386 0, -2, -2, -2, -2, ... %e A293386 0, 1, -3, -3, -3, ... %e A293386 0, -2, 10, 4, 4, ... %e A293386 0, 4, -4, 14, 6, ... %e A293386 0, -4, -20, -8, 16, ... %Y A293386 Columns k=0..1 give A000007, A022597. %Y A293386 Rows n=0 gives A000012. %Y A293386 Main diagonal gives A252650. %Y A293386 Product_{i>0} (1 + Sum_{j=1..k} j*x^(j*i))^m: this sequence (m=-2), A290217 (m=-1), A290216 (m=1), A293377 (m=2). %K A293386 sign,tabl %O A293386 0,5 %A A293386 _Seiichi Manyama_, Oct 07 2017