cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293387 Expansion of (eta(q^2)^2/(eta(q)eta(q^3)))^2 in powers of q.

This page as a plain text file.
%I A293387 #14 Oct 08 2017 03:28:53
%S A293387 1,2,1,4,6,2,12,16,5,28,36,12,60,76,24,120,150,46,228,280,86,416,504,
%T A293387 152,732,878,262,1252,1488,442,2088,2464,725,3408,3996,1168,5460,6364,
%U A293387 1852,8600,9972,2886,13344,15400,4436,20424,23472,6736,30876,35346,10103
%N A293387 Expansion of (eta(q^2)^2/(eta(q)eta(q^3)))^2 in powers of q.
%H A293387 Seiichi Manyama, <a href="/A293387/b293387.txt">Table of n, a(n) for n = 0..10000</a>
%F A293387 G.f.: Product_{k>0} ((1 - x^(2*k))^2/((1 - x^k)*(1 - x^(3*k))))^2.
%t A293387 nmax = 100; CoefficientList[Series[Product[((1 - x^(2*k))^2/((1 - x^k)*(1 - x^(3*k))))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 08 2017 *)
%Y A293387 Cf. A262930, A292577.
%K A293387 nonn
%O A293387 0,2
%A A293387 _Seiichi Manyama_, Oct 07 2017