A293394 Numbers k such that (2*k-1)*(2^((k-1)/4)) == 1 (mod k).
1, 17, 41, 97, 137, 193, 241, 313, 401, 409, 433, 449, 457, 521, 569, 641, 673, 761, 769, 809, 857, 929, 953, 977, 1009, 1129, 1297, 1321, 1361, 1409, 1489, 1657, 1697, 1873, 1993, 2017, 2081, 2137, 2153, 2161
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Jonas Kaiser, On the relationship between the Collatz conjecture and Mersenne prime numbers, arXiv:1608.00862 [math.GM], 2016.
Programs
-
Mathematica
Select[Range[1, 3001, 4], #==1 || Mod[-PowerMod[#-2, (#-1)/4, #], #]==1&] (* Jean-François Alcover, Nov 18 2018 *)
-
PARI
is(n)=n%4==1 && (2*n-1)*Mod(2,n)^(n>>2)==1 \\ Charles R Greathouse IV, Nov 09 2017
Comments