This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293406 #7 Nov 02 2017 09:20:16 %S A293406 1,3,9,18,34,60,103,174,289,476,779,1270,2065,3352,5435,8807,14263, %T A293406 23092,37378,60494,97897,158417,256341,414786,671156,1085972,1757159, %U A293406 2843163,4600355,7443552,12043943,19487532,31531513,51019084,82550637,133569762 %N A293406 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4. %C A293406 The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. The initial values of each sequence in the following guide are a(0) = 1, a(2) = 3, b(0) = 2, b(1) = 4: %C A293406 Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio. See A293358 for a guide to related sequences. %H A293406 Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Kimberling/kimberling26.pdf">Complementary equations</a>, J. Int. Seq. 19 (2007), 1-13. %e A293406 a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that %e A293406 a(2) = a(1) + a(0) + b(1) + 1 = 8; %e A293406 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, ...) %t A293406 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A293406 a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; %t A293406 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + 1; %t A293406 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A293406 Table[a[n], {n, 0, 40}] (* A293406 *) %t A293406 Table[b[n], {n, 0, 10}] %Y A293406 Cf. A001622 (golden ratio), A293076. %K A293406 nonn,easy %O A293406 0,2 %A A293406 _Clark Kimberling_, Oct 29 2017