A293410 Least integer k such that k/n^2 > sqrt(3).
0, 2, 7, 16, 28, 44, 63, 85, 111, 141, 174, 210, 250, 293, 340, 390, 444, 501, 562, 626, 693, 764, 839, 917, 998, 1083, 1171, 1263, 1358, 1457, 1559, 1665, 1774, 1887, 2003, 2122, 2245, 2372, 2502, 2635, 2772, 2912, 3056, 3203, 3354, 3508, 3666, 3827, 3991
Offset: 0
Links
- Clark Kimberling, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
z = 120; r = Sqrt[3]; Table[Floor[r*n^2], {n, 0, z}]; (* A171972 *) Table[Ceiling[r*n^2], {n, 0, z}]; (* A293410 *) Table[Round[r*n^2], {n, 0, z}]; (* A070169 *)
-
Python
from math import isqrt def A293410(n): return 1+isqrt(3*n**4-1) if n else 0 # Chai Wah Wu, Jul 31 2022
Formula
a(n) = ceiling(r*n^2), where r = sqrt(3).
a(n) = A171972(n) + 1 for n > 0.