This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293421 #35 Jul 18 2025 20:24:16 %S A293421 1,3,6,13,24,45,77,132,213,346,537,834,1257,1893,2778,4077,5865,8421, %T A293421 11903,16785,23364,32444,44562,61041,82859,112164,150639,201768, %U A293421 268413,356100,469636,617724,808236,1054802,1370127,1775286,2290610,2948427,3780717,4836814 %N A293421 The PD_t(n) function (Number of tagged parts over all the partitions of n with designated summands). %H A293421 Seiichi Manyama, <a href="/A293421/b293421.txt">Table of n, a(n) for n = 1..10000</a> %H A293421 Bernard L. S. Lin, <a href="https://doi.org/10.1016/j.jnt.2017.08.020">The number of tagged parts over the partitions with designated summands</a>, Journal of Number Theory. %F A293421 G.f.: (1/2) * (Product_{k>0} (1 - q^(3*k))^5/((1 - q^k)^3*(1 - q^(6*k))^2) - Product_{k>0} (1 - q^(6*k))/((1 - q^k)*(1 - q^(2*k))*(1 - q^(3*k)))). %F A293421 a(n) = (1/2) * (A293423(n) - A077285(n)). %F A293421 a(n) ~ 5^(1/4) * exp(sqrt(10*n)*Pi/3) / (9*2^(5/4)*n^(3/4)). - _Vaclav Kotesovec_, Oct 15 2017 %e A293421 n = 4 %e A293421 ------------------- %e A293421 4' -> 1 %e A293421 3'+ 1' -> 2 %e A293421 2'+ 2 -> 1 %e A293421 2 + 2' -> 1 %e A293421 2'+ 1'+ 1 -> 2 %e A293421 2'+ 1 + 1' -> 2 %e A293421 1'+ 1 + 1 + 1 -> 1 %e A293421 1 + 1'+ 1 + 1 -> 1 %e A293421 1 + 1 + 1'+ 1 -> 1 %e A293421 1 + 1 + 1 + 1'-> 1 %e A293421 ------------------- %e A293421 a(4) = 13. %p A293421 b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i>1, b(n, i-1), 0)+ %p A293421 add((p-> p+[0, p[1]])(b(n-i*j, min(n-i*j, i-1))*j), j=`if`(i=1, n, 1..n/i))) %p A293421 end: %p A293421 a:= n-> b(n$2)[2]: %p A293421 seq(a(n), n=1..40); # _Alois P. Heinz_, Jul 18 2025 %o A293421 (Ruby) %o A293421 def partition(n, min, max) %o A293421 return [[]] if n == 0 %o A293421 [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}} %o A293421 end %o A293421 def A(n) %o A293421 partition(n, 1, n).map{|a| a.each_with_object(Hash.new(0)){|v, o| o[v] += 1}.values}.map{|i| i.size * i.inject(:*)}.inject(:+) %o A293421 end %o A293421 def A293421(n) %o A293421 (1..n).map{|i| A(i)} %o A293421 end %o A293421 p A293421(40) %Y A293421 Cf. A077285 (PD(n)), A293422, A293423. %K A293421 nonn %O A293421 1,2 %A A293421 _Seiichi Manyama_, Oct 08 2017