This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293422 #33 Oct 15 2017 05:47:13 %S A293422 1,2,4,6,10,16,24,36,52,74,104,144,196,264,352,468,614,800,1036,1332, %T A293422 1704,2168,2744,3456,4331,5408,6724,8328,10278,12640,15496,18936, %U A293422 23072,28030,33960,41040,49470,59488,71368,85428,102042,121632,144692,171792,203584 %N A293422 The PDO_t(n) function (Number of tagged parts over all the partitions of n with designated summands in which all parts are odd). %H A293422 Seiichi Manyama, <a href="/A293422/b293422.txt">Table of n, a(n) for n = 1..10000</a> %H A293422 Bernard L. S. Lin, <a href="https://doi.org/10.1016/j.jnt.2017.08.020">The number of tagged parts over the partitions with designated summands</a>, Journal of Number Theory. %F A293422 G.f.: q * Product_{k>0} ((1 - q^(2*k))*(1 - q^(3*k))^2*(1 - q^(12*k))^2)/((1 - q^k)^2*(1 - q^(6*k))). %F A293422 a(n) ~ exp(sqrt(5*n)*Pi/3) / (3 * 2^(3/2) * 5^(1/4) * n^(1/4)). - _Vaclav Kotesovec_, Oct 15 2017 %e A293422 n = 4 n = 5 n = 6 %e A293422 ------------------- ----------------------- --------------------------- %e A293422 3'+ 1' -> 2 5' -> 1 5'+ 1' -> 2 %e A293422 1'+ 1 + 1 + 1 -> 1 3'+ 1'+ 1 -> 2 3'+ 3 -> 1 %e A293422 1 + 1'+ 1 + 1 -> 1 3'+ 1 + 1' -> 2 3 + 3' -> 1 %e A293422 1 + 1 + 1'+ 1 -> 1 1'+ 1 + 1 + 1 + 1 -> 1 3'+ 1'+ 1 + 1 -> 2 %e A293422 1 + 1 + 1 + 1'-> 1 1 + 1'+ 1 + 1 + 1 -> 1 3'+ 1 + 1'+ 1 -> 2 %e A293422 1 + 1 + 1'+ 1 + 1 -> 1 3'+ 1 + 1 + 1' -> 2 %e A293422 1 + 1 + 1 + 1'+ 1 -> 1 1'+ 1 + 1 + 1 + 1 + 1 -> 1 %e A293422 1 + 1 + 1 + 1 + 1'-> 1 1 + 1'+ 1 + 1 + 1 + 1 -> 1 %e A293422 1 + 1 + 1'+ 1 + 1 + 1 -> 1 %e A293422 1 + 1 + 1 + 1'+ 1 + 1 -> 1 %e A293422 1 + 1 + 1 + 1 + 1'+ 1 -> 1 %e A293422 1 + 1 + 1 + 1 + 1 + 1'-> 1 %e A293422 ------------------- ----------------------- --------------------------- %e A293422 a(4) = 6. a(5) = 10. a(6) = 16. %t A293422 nmax = 50; CoefficientList[Series[Product[(1-x^(2*k)) * (1-x^(3*k))^2 * (1-x^(12*k))^2 / ((1-x^k)^2 * (1-x^(6*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 15 2017 *) %o A293422 (Ruby) %o A293422 def partition(n, min, max) %o A293422 return [[]] if n == 0 %o A293422 [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}} %o A293422 end %o A293422 def A(n) %o A293422 partition(n, 1, n).select{|i| i.all?{|j| j.odd?}}.map{|a| a.each_with_object(Hash.new(0)){|v, o| o[v] += 1}.values}.map{|i| i.size * i.inject(:*)}.inject(:+) %o A293422 end %o A293422 def A293422(n) %o A293422 (1..n).map{|i| A(i)} %o A293422 end %o A293422 p A293422(40) %Y A293422 Cf. A102186 (PDO(n)), A293421. %K A293422 nonn %O A293422 1,2 %A A293422 _Seiichi Manyama_, Oct 08 2017