This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293451 #19 Nov 25 2023 08:02:16 %S A293451 0,1,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,2,1,2,1,1,1,1,2,2,2,1,1,2,1,1,1,2, %T A293451 2,2,1,1,2,2,1,2,1,1,3,1,1,1,1,3,2,2,1,2,2,1,1,2,1,2,1,1,3,1,3,2,1,2, %U A293451 1,2,1,2,1,2,3,1,1,2,1,2,2,2,1,2,3,1,2,1,1,4,2,1,1,1,2,1,1,2,3,3,1,2,1,2,3 %N A293451 Number of proper divisors of n of the form 4k+1. %H A293451 Antti Karttunen, <a href="/A293451/b293451.txt">Table of n, a(n) for n = 1..16384</a> %H A293451 R. A. Smith and M. V. Subbarao, <a href="https://doi.org/10.4153/CMB-1981-005-3">The average number of divisors in an arithmetic progression</a>, Canadian Mathematical Bulletin, Vol. 24, No. 1 (1981), pp. 37-41. %F A293451 a(n) = Sum_{d|n, d<n} [1 == d mod 4]. %F A293451 a(n) = A091954(n) - A293513(n). %F A293451 a(n) = A001826(n) - A121262(n-1). %F A293451 G.f.: Sum_{k>=1} x^(8*k-6) / (1 - x^(4*k-3)). - _Ilya Gutkovskiy_, Apr 14 2021 %F A293451 Sum_{k=1..n} a(k) = n*log(n)/4 + c*n + O(n^(1/3)*log(n)), where c = gamma(1,4) - (2 - gamma)/4 = A256778 - (2 - A001620)/4 = 0.354593... (Smith and Subbarao, 1981). - _Amiram Eldar_, Nov 25 2023 %t A293451 a[n_] := DivisorSum[n, 1 &, # < n && Mod[#, 4] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Nov 25 2023 *) %o A293451 (PARI) A293451(n) = sumdiv(n,d,(d<n)*(1==(d%4))); %Y A293451 Cf. A001620, A001826, A091954, A121262, A256778, A293513, A293901. %K A293451 nonn,easy %O A293451 1,10 %A A293451 _Antti Karttunen_, Oct 19 2017