cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293465 a(n) = Sum_{k=0..n} (-1)^k * 2^k * q(k), where q(k) is A000009 (partitions into distinct parts).

This page as a plain text file.
%I A293465 #9 Oct 09 2017 19:17:46
%S A293465 1,-1,3,-13,19,-77,179,-461,1075,-3021,7219,-17357,44083,-103373,
%T A293465 257075,-627661,1469491,-3511245,8547379,-19764173,47344691,
%U A293465 -112038861,261254195,-611161037,1435659315,-3329070029,7743892531,-18025911245,41566759987,-95872193485
%N A293465 a(n) = Sum_{k=0..n} (-1)^k * 2^k * q(k), where q(k) is A000009 (partitions into distinct parts).
%H A293465 Vaclav Kotesovec, <a href="/A293465/b293465.txt">Table of n, a(n) for n = 0..1000</a>
%F A293465 a(n) ~ (-1)^n * 2^(n-1) * exp(Pi*sqrt(n/3)) / (3^(5/4) * n^(3/4)).
%F A293465 a(n) ~ (-1)^n * 2/3 * 2^n * A000009(n).
%t A293465 Table[Sum[(-1)^k * 2^k * PartitionsQ[k], {k, 0, n}], {n, 0, 30}]
%Y A293465 Cf. A025147, A293466.
%K A293465 sign
%O A293465 0,3
%A A293465 _Vaclav Kotesovec_, Oct 09 2017