cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293466 a(n) = Sum_{k=0..n} 2^k * q(k), where q(k) is A000009 (partitions into distinct parts).

This page as a plain text file.
%I A293466 #6 Oct 09 2017 12:42:02
%S A293466 1,3,7,23,55,151,407,1047,2583,6679,16919,41495,102935,250391,610839,
%T A293466 1495575,3592727,8573463,20632087,48943639,116052503,275436055,
%U A293466 648729111,1521144343,3567964695,8332694039,19405656599,45175460375,104768131607,242207085079
%N A293466 a(n) = Sum_{k=0..n} 2^k * q(k), where q(k) is A000009 (partitions into distinct parts).
%F A293466 a(n) ~ 2^(n-1) * exp(Pi*sqrt(n/3)) / (3^(1/4) * n^(3/4)).
%t A293466 Table[Sum[2^k * PartitionsQ[k], {k, 0, n}], {n, 0, 30}]
%Y A293466 Cf. A025147, A259400, A293465.
%K A293466 nonn
%O A293466 0,2
%A A293466 _Vaclav Kotesovec_, Oct 09 2017