This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293467 #15 Feb 07 2025 21:31:41 %S A293467 1,0,0,-1,-3,-7,-14,-25,-41,-64,-100,-165,-294,-550,-1023,-1795,-2823, %T A293467 -3658,-2882,2873,20435,62185,148863,314008,613957,1155794,2175823, %U A293467 4244026,8753538,19006490,42471787,95234575,210395407,453413866,949508390,1931939460 %N A293467 a(n) = Sum_{k=0..n} (-1)^k * binomial(n, k) * q(k), where q(k) is A000009 (partitions into distinct parts). %C A293467 Multiply by (-1)^n to get A380412, which is the first term of the n-th differences of the strict partition numbers, or column n=0 of A378622. - _Gus Wiseman_, Feb 04 2025 %H A293467 Vaclav Kotesovec, <a href="/A293467/b293467.txt">Table of n, a(n) for n = 0..1000</a> %H A293467 Vaclav Kotesovec, <a href="/A293467/a293467.jpg">Graph: a(n)/2^n (40000 terms)</a> %t A293467 Table[Sum[(-1)^k * Binomial[n, k] * PartitionsQ[k], {k, 0, n}], {n, 0, 50}] %Y A293467 Cf. A025147, A266232, A294467, A294468. %Y A293467 Cf. A218481, A294466, A095051. %Y A293467 The non-strict version is the absolute value of A281425; see A175804, A320590. %Y A293467 Up to sign, same as A380412. See A320591, A377285, A378970, A378971. %Y A293467 A000009 counts strict integer partitions, differences A087897. %Y A293467 Cf. A000041, A002865, A007442, A008284, A116608. %K A293467 sign %O A293467 0,5 %A A293467 _Vaclav Kotesovec_, Oct 09 2017