This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293473 #14 Oct 11 2017 10:24:20 %S A293473 1,1,2,4,6,4,12,30,24,8,52,144,156,80,16,240,760,1020,680,240,32,1188, %T A293473 4440,6720,5640,2640,672,64,6804,26712,47040,45640,26880,9408,1792, %U A293473 128,38960,175392,338016,376320,261520,115584,31360,4608,256 %N A293473 Triangle read by rows, coefficients of polynomials in t = log(x) of the n-th derivative of x^(x^2), evaluated at x = 1. T(n, k) with n >= 0 and 0 <= k <= n. %e A293473 Triangle starts: %e A293473 0: [ 1] %e A293473 1: [ 1, 2] %e A293473 2: [ 4, 6, 4] %e A293473 3: [ 12, 30, 24, 8] %e A293473 4: [ 52, 144, 156, 80, 16] %e A293473 5: [ 240, 760, 1020, 680, 240, 32] %e A293473 6: [1188, 4440, 6720, 5640, 2640, 672, 64] %e A293473 7: [6804, 26712, 47040, 45640, 26880, 9408, 1792, 128] %e A293473 ... %e A293473 For n = 3, the 3rd derivative of x^(x^2) is p(3,x,t) = 8*t^3*x^3*x^(x^2) + 12*t^2*x^3*x^(x^2) + 6*t*x^3*x^(x^2) + 12*t^2*x*x^(x^2) + x^3*x^(x^2) + 24*t*x*x^(x^2) + 9*x*x^(x^2) + 2*x^(x^2)/x where log(x) is substituted by t. Evaluated at x = 1: p(3,1,t) = 12 + 30*t + 24*t^2 + 8*t^3 with coefficients [12, 30, 24, 8]. %p A293473 # Function dx in A293472. %p A293473 ListTools:-Flatten([seq(dx(2, n), n=0..8)]); %t A293473 (* Function dx in A293472. *) %t A293473 Table[dx[2, n], {n, 0, 7}] // Flatten %Y A293473 T(n, 0) = A215524, T(n, n) = A000079. %Y A293473 More generally, consider the n-th derivative of x^(x^m). %Y A293473 A293472 (m=1), this seq. (m=2), A293474 (m=3). %Y A293473 Cf. A290268. %K A293473 sign,tabl %O A293473 0,3 %A A293473 _Peter Luschny_, Oct 10 2017