cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293482 The number of 5th powers in the multiplicative group modulo n.

This page as a plain text file.
%I A293482 #43 Oct 28 2023 11:41:23
%S A293482 1,1,2,2,4,2,6,4,6,4,2,4,12,6,8,8,16,6,18,8,12,2,22,8,4,12,18,12,28,8,
%T A293482 6,16,4,16,24,12,36,18,24,16,8,12,42,4,24,22,46,16,42,4,32,24,52,18,8,
%U A293482 24,36,28,58,16,12,6,36,32,48,4,66,32,44,24,14,24,72,36,8,36,12,24,78,32,54,8,82,24
%N A293482 The number of 5th powers in the multiplicative group modulo n.
%C A293482 The size of the set of numbers j^5 mod n, gcd(j,n)=1, 1 <= j <= n.
%C A293482 A000010(n) / a(n) is another multiplicative integer sequence.
%H A293482 R. J. Mathar, <a href="/A293482/b293482.txt">Table of n, a(n) for n = 1..7548</a>
%H A293482 R. J. Mathar, <a href="/A293482/a293482.pdf">Size of the set of residues of integer powers of fixed exponent</a>, 2017.
%H A293482 Samer Seraj, <a href="https://dx.doi.org/10.7546/nntdm.2022.28.4.730-743">Counting general power residues</a>, Not. Numb. Th. Discr. Math. 28 (4) (2022) 730-743.
%H A293482 Samer Seraj, <a href="http://math.colgate.edu/~integers/x62/x62.pdf">Resolution of Mathar's conjectures on counting power residues</a>, INTEGERS 23 (2023) #A62.
%F A293482 Conjecture: a(2^e) = 1 for e <= 1; a(2^e) = 2^(e-1) for e >= 1; a(5)=4; a(5^e) = 4*5^(e-2) for e > 1; a(p^e) = (p-1)*p^(e-1) for p == {2,3,4} (mod 5); a(p^e) = (p-1)*p^(e-1)/5 for p == 1 (mod 5). - _R. J. Mathar_, Oct 13 2017
%F A293482 a(n) = A000010(n)/A319099(n). This implies that the conjecture above is true. - _Jianing Song_, Nov 10 2019
%p A293482 A293482 := proc(n)
%p A293482     local r,j;
%p A293482     r := {} ;
%p A293482     for j from 1 to n do
%p A293482         if igcd(j,n)= 1 then
%p A293482             r := r union { modp(j &^ 5,n) } ;
%p A293482         end if;
%p A293482     end do:
%p A293482     nops(r) ;
%p A293482 end proc:
%p A293482 seq(A293482(n),n=1..120) ;
%t A293482 a[n_] := Module[{r, j}, r = {}; For[j = 1, j <= n, j++, If[GCD[j, n] == 1, r = r ~Union~ {PowerMod[j, 5, n]}] ]; Length[r]];
%t A293482 Table[a[n], {n, 1, 120}] (* _Jean-François Alcover_, Feb 14 2023, after _R. J. Mathar_ *)
%t A293482 f[p_, e_] := (p - 1)*p^(e - 1)/If[Mod[p, 5] == 1, 5, 1]; f[2, e_] := 2^(e - 1); f[2, 1] = 1; f[5, e_] := 4*5^(e-2); f[5, 1] = 4; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Aug 10 2023 *)
%Y A293482 The number of k-th powers in the multiplicative group modulo n: A046073 (k=2), A087692 (k=3), A250207 (k=4), this sequence (k=5), A293483 (k=6), A293484 (k=7), A293485 (k=8).
%Y A293482 Cf. A052274, A319099, A000010.
%K A293482 nonn,mult
%O A293482 1,3
%A A293482 _R. J. Mathar_, Oct 10 2017