This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293483 #32 Aug 10 2023 02:21:20 %S A293483 1,1,1,1,2,1,1,1,1,2,5,1,2,1,2,2,8,1,3,2,1,5,11,1,10,2,3,1,14,2,5,4,5, %T A293483 8,2,1,6,3,2,2,20,1,7,5,2,11,23,2,7,10,8,2,26,3,10,1,3,14,29,2,10,5,1, %U A293483 8,4,5,11,8,11,2,35,1,12,6,10,3,5,2,13,4,9,20 %N A293483 The number of 6th powers in the multiplicative group modulo n. %C A293483 The size of the set of numbers j^6 mod n, gcd(j,n)=1, 1 <= j <= n. %C A293483 A000010(n) / a(n) is another multiplicative integer sequence. %H A293483 R. J. Mathar, <a href="/A293483/b293483.txt">Table of n, a(n) for n = 1..10132</a> %H A293483 Richard J. Mathar, <a href="/A293482/a293482.pdf">Size of the Set of Residues of Integer Powers of Fixed Exponent</a>, 2017. %F A293483 Conjecture: a(2^e) = 1 for e <= 3; a(2^e) = 2^(e-3) for e >= 3; a(3^e) = 1 for e <= 2; a(3^e) = 3^(e-2) for e >= 2; a(p^e) = (p-1)*p^(e-1)/2 for p == 5 (mod 6); a(p^e) = (p-1)*p^(e-1)/6 for p == 1 (mod 6). - _R. J. Mathar_, Oct 13 2017 %F A293483 a(n) = A000010(n)/A319100(n). This implies that the conjecture above is true. - _Jianing Song_, Nov 10 2019 %p A293483 A293483 := proc(n) %p A293483 local r,j; %p A293483 r := {} ; %p A293483 for j from 1 to n do %p A293483 if igcd(j,n)= 1 then %p A293483 r := r union { modp(j &^ 6,n) } ; %p A293483 end if; %p A293483 end do: %p A293483 nops(r) ; %p A293483 end proc: %p A293483 seq(A293483(n),n=1..120) ; %t A293483 a[n_] := EulerPhi[n]/Count[Range[0, n - 1]^6 - 1, k_ /; Divisible[k, n]]; %t A293483 Array[a, 100] (* _Jean-François Alcover_, May 24 2023 *) %t A293483 f[p_, e_] := (p - 1)*p^(e - 1)/If[Mod[p, 6] == 1, 6, 2]; f[2, e_] := If[e <= 3, 1, 2^(e - 3)]; f[3, e_] := If[e <= 2, 1, 3^(e - 2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Aug 10 2023 *) %Y A293483 The number of k-th powers in the multiplicative group modulo n: A046073 (k=2), A087692 (k=3), A250207 (k=4), A293482 (k=5), this sequence (k=6), A293484 (k=7), A293485 (k=8). %Y A293483 Cf. A052275, A319100, A000010. %K A293483 nonn,mult %O A293483 1,5 %A A293483 _R. J. Mathar_, Oct 10 2017