cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293483 The number of 6th powers in the multiplicative group modulo n.

This page as a plain text file.
%I A293483 #32 Aug 10 2023 02:21:20
%S A293483 1,1,1,1,2,1,1,1,1,2,5,1,2,1,2,2,8,1,3,2,1,5,11,1,10,2,3,1,14,2,5,4,5,
%T A293483 8,2,1,6,3,2,2,20,1,7,5,2,11,23,2,7,10,8,2,26,3,10,1,3,14,29,2,10,5,1,
%U A293483 8,4,5,11,8,11,2,35,1,12,6,10,3,5,2,13,4,9,20
%N A293483 The number of 6th powers in the multiplicative group modulo n.
%C A293483 The size of the set of numbers j^6 mod n, gcd(j,n)=1, 1 <= j <= n.
%C A293483 A000010(n) / a(n) is another multiplicative integer sequence.
%H A293483 R. J. Mathar, <a href="/A293483/b293483.txt">Table of n, a(n) for n = 1..10132</a>
%H A293483 Richard J. Mathar, <a href="/A293482/a293482.pdf">Size of the Set of Residues of Integer Powers of Fixed Exponent</a>, 2017.
%F A293483 Conjecture: a(2^e) = 1 for e <= 3; a(2^e) = 2^(e-3) for e >= 3; a(3^e) = 1 for e <= 2; a(3^e) = 3^(e-2) for e >= 2; a(p^e) = (p-1)*p^(e-1)/2 for p == 5 (mod 6); a(p^e) = (p-1)*p^(e-1)/6 for p == 1 (mod 6). - _R. J. Mathar_, Oct 13 2017
%F A293483 a(n) = A000010(n)/A319100(n). This implies that the conjecture above is true. - _Jianing Song_, Nov 10 2019
%p A293483 A293483 := proc(n)
%p A293483     local r,j;
%p A293483     r := {} ;
%p A293483     for j from 1 to n do
%p A293483         if igcd(j,n)= 1 then
%p A293483             r := r union { modp(j &^ 6,n) } ;
%p A293483         end if;
%p A293483     end do:
%p A293483     nops(r) ;
%p A293483 end proc:
%p A293483 seq(A293483(n),n=1..120) ;
%t A293483 a[n_] := EulerPhi[n]/Count[Range[0, n - 1]^6 - 1, k_ /; Divisible[k, n]];
%t A293483 Array[a, 100] (* _Jean-François Alcover_, May 24 2023 *)
%t A293483 f[p_, e_] := (p - 1)*p^(e - 1)/If[Mod[p, 6] == 1, 6, 2]; f[2, e_] := If[e <= 3, 1, 2^(e - 3)]; f[3, e_] := If[e <= 2, 1, 3^(e - 2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Aug 10 2023 *)
%Y A293483 The number of k-th powers in the multiplicative group modulo n: A046073 (k=2), A087692 (k=3), A250207 (k=4), A293482 (k=5), this sequence (k=6), A293484 (k=7), A293485 (k=8).
%Y A293483 Cf. A052275, A319100, A000010.
%K A293483 nonn,mult
%O A293483 1,5
%A A293483 _R. J. Mathar_, Oct 10 2017