cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293484 The number of 7th powers in the multiplicative group modulo n.

This page as a plain text file.
%I A293484 #34 Aug 10 2023 02:21:05
%S A293484 1,1,2,2,4,2,6,4,6,4,10,4,12,6,8,8,16,6,18,8,12,10,22,8,20,12,18,12,4,
%T A293484 8,30,16,20,16,24,12,36,18,24,16,40,12,6,20,24,22,46,16,6,20,32,24,52,
%U A293484 18,40,24,36,4,58,16,60,30,36,32,48,20,66,32,44,24,10,24,72,36,40,36
%N A293484 The number of 7th powers in the multiplicative group modulo n.
%C A293484 The size of the set of numbers j^7 mod n, gcd(j,n)=1, 1 <= j <= n.
%C A293484 A000010(n) / a(n) is another multiplicative integer sequence (size of the kernel of the isomorphism of the multiplicative group modulo n to the multiplicative group of 7th powers modulo n).
%H A293484 R. J. Mathar, <a href="/A293484/b293484.txt">Table of n, a(n) for n = 1..10116</a>
%H A293484 Richard J. Mathar, <a href="/A293482/a293482.pdf">Size of the Set of Residues of Integer Powers of Fixed Exponent</a>, 2017.
%F A293484 Conjecture: a(2^e) = 1 for e <= 1; a(2^e) = 2^(e-1) for e >= 1; a(7^e) = 6 for e=1; a(7^e) = 6*7^(e-2) for e >= 2; a(p^e) = (p-1)*p^(e-1) for p == {2,3,4,5,6} (mod 7); a(p^e) = (p-1)*p^(e-1)/7 for p == 1 (mod 7). - _R. J. Mathar_, Oct 13 2017
%F A293484 a(n) = A000010(n)/A319101(n). This implies that the conjecture above is true. - _Jianing Song_, Nov 10 2019
%p A293484 A293484 := proc(n)
%p A293484     local r,j;
%p A293484     r := {} ;
%p A293484     for j from 1 to n do
%p A293484         if igcd(j,n)= 1 then
%p A293484             r := r union { modp(j &^ 7,n) } ;
%p A293484         end if;
%p A293484     end do:
%p A293484     nops(r) ;
%p A293484 end proc:
%p A293484 seq(A293484(n),n=1..120) ;
%t A293484 a[n_] := EulerPhi[n]/Count[Range[0, n - 1]^7 - 1, k_ /; Divisible[k, n]];
%t A293484 Array[a, 100] (* _Jean-François Alcover_, May 24 2023 *)
%t A293484 f[p_, e_] := (p-1)*p^(e-1)/If[Mod[p, 7] == 1, 7, 1]; f[2, e_] := 2^(e-1); f[7, 1] = 6; f[7, e_] := 6*7^(e-2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Aug 10 2023 *)
%Y A293484 The number of k-th powers in the multiplicative group modulo n: A046073 (k=2), A087692 (k=3), A250207 (k=4), A293482 (k=5), A293483 (k=6), this sequence (k=7), A293485 (k=8).
%Y A293484 Cf. A085310, A319101, A000010.
%K A293484 nonn,mult
%O A293484 1,3
%A A293484 _R. J. Mathar_, Oct 10 2017