cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293485 The number of 8th powers in the multiplicative group modulo n.

This page as a plain text file.
%I A293485 #32 Aug 10 2023 02:20:50
%S A293485 1,1,1,1,1,1,3,1,3,1,5,1,3,3,1,1,2,3,9,1,3,5,11,1,5,3,9,3,7,1,15,1,5,
%T A293485 2,3,3,9,9,3,1,5,3,21,5,3,11,23,1,21,5,2,3,13,9,5,3,9,7,29,1,15,15,9,
%U A293485 2,3,5,33,2,11,3,35,3,9,9,5,9,15,3,39,1,27,5,41,3,2
%N A293485 The number of 8th powers in the multiplicative group modulo n.
%C A293485 The size of the set of numbers j^8 mod n, gcd(j,n)=1, 1<=j<=n.
%H A293485 Antti Karttunen, <a href="/A293485/b293485.txt">Table of n, a(n) for n = 1..16384</a>
%H A293485 Richard J. Mathar, <a href="/A293482/a293482.pdf">Size of the Set of Residues of Integer Powers of Fixed Exponent</a>, research paper, 2017.
%F A293485 A000010(n) / a(n) = A247257(n).
%F A293485 Multiplicative with a(2^e) = 1 for e<=4, a(2^e) = 2^(e-5) for e>=5; a(p^e) = (p-1)*p^(e-1)/8 for p == 1 (mod 8); a(p^e) = (p-1)*p^(e-1)/4 for p == 5 (mod 8); a(p^e) = (p-1)*p^(e-1)/2 for p == {3,7} (mod 8). - _R. J. Mathar_, Oct 15 2017 [corrected by _Georg Fischer_, Jul 21 2022]
%p A293485 A293485 := proc(n)
%p A293485     local r,j;
%p A293485     r := {} ;
%p A293485     for j from 1 to n do
%p A293485         if igcd(j,n)= 1 then
%p A293485             r := r union { modp(j &^ 8,n) } ;
%p A293485         end if;
%p A293485     end do:
%p A293485     nops(r) ;
%p A293485 end proc:
%p A293485 seq(A293485(n),n=1..120) ;
%t A293485 a[n_] := EulerPhi[n]/Count[Range[0, n - 1]^8 - 1, k_ /; Divisible[k, n]];
%t A293485 Array[a, 100] (* _Jean-François Alcover_, May 24 2023 *)
%t A293485 f[p_, e_] := (p - 1)*p^(e - 1)/Switch[Mod[p, 8], 1, 8, 5, 4, _, 2]; f[2, e_] := If[e <= 4, 1, 2^(e - 5)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* _Amiram Eldar_, Aug 10 2023 *)
%o A293485 (PARI)
%o A293485 \\ The following two functions by _Charles R Greathouse IV_, from A247257:
%o A293485 g(p, e) = if(p==2, 2^min(e-1, 4), if(p%4==3, 2, if(p%8==5, 4, 8)));
%o A293485 A247257(n) = my(f=factor(n)); prod(i=1, #f~, g(f[i, 1], f[i, 2]));
%o A293485 A293485(n) = (eulerphi(n)/A247257(n)); \\ _Antti Karttunen_, Dec 05 2017
%Y A293485 The number of k-th powers in the multiplicative group modulo n: A046073 (k=2), A087692 (k=3), A250207 (k=4), A293482 (k=5), A293483 (k=6), A293484 (k=7), this sequence (k=8).
%Y A293485 Cf. A085311, A247257 (order of the kernel isomorphism of Z/nZ to this group), A000010.
%K A293485 nonn,mult
%O A293485 1,7
%A A293485 _R. J. Mathar_, Oct 10 2017