A293497 Triangular array read by rows: row n >= 1 is the list of integers from 0 to 2n-1.
0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8
Offset: 0
Examples
Triangle begins: 0, 1; 0, 1, 2, 3; 0, 1, 2, 3, 4, 5; 0, 1, 2, 3, 4, 5, 6, 7; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; ...
Programs
-
Mathematica
FOdd[x_] := x*(x + 1) InvFOdd[x_] := (Sqrt[1 + 4 x] - 1)/2 GOdd[n_] := n - FOdd[Floor[InvFOdd[n]]] Table[GOdd[n], {n, 0, 80}]
Formula
a(n) = n - g(floor(f(n))), with f(x) = (sqrt(1+4x)-1)/2 and g(x) = x(x+1).
a(n) = f(n,1) with f(n,m) = if n < m then n, otherwise f(n-m,m+2).
a(n) = t - t^2 + n, where t = floor(sqrt(n+1) + 1/2). - Ridouane Oudra, May 03 2019
Comments