This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293525 #26 Oct 15 2017 01:05:52 %S A293525 1,1,0,1,1,0,1,1,1,0,1,1,3,7,0,1,1,3,7,25,0,1,1,3,13,49,181,0,1,1,3, %T A293525 13,49,321,1201,0,1,1,3,13,73,381,2131,10291,0,1,1,3,13,73,381,2971, %U A293525 19783,97777,0,1,1,3,13,73,501,3331,26713,195777,1013545,0,1,1 %N A293525 Square array A(n,k), n >= 0, k >= 1, read by antidiagonals, where column k is the expansion of e.g.f. Product_{j > 0, j mod k > 0} exp(x^j). %H A293525 Seiichi Manyama, <a href="/A293525/b293525.txt">Antidiagonals n = 0..139, flattened</a> %F A293525 E.g.f. of column k: exp((Sum_{j=1..k-1} x^j)/(1 - x^k)). %e A293525 Square array begins: %e A293525 1, 1, 1, 1, 1, ... %e A293525 0, 1, 1, 1, 1, ... %e A293525 0, 1, 3, 3, 3, ... %e A293525 0, 7, 7, 13, 13, ... %e A293525 0, 25, 49, 49, 73, ... %e A293525 0, 181, 321, 381, 381, ... %t A293525 kmax = 12; col[k_] := PadRight[(Exp[Sum[x^j, {j, 1, k - 1}]/(1 - x^k)] + O[x]^kmax // CoefficientList[#, x] &), kmax]*Range[0, kmax - 1]!; A = Array[col, kmax]; Table[A[[n - k + 1, k]], {n, 1, kmax}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Oct 12 2017, from formula *) %Y A293525 Columns k=1..3 give A000007, A088009, A113775. %Y A293525 Rows n=0 gives A000012. %Y A293525 Main diagonal gives A000262. %Y A293525 Cf. A293530. %K A293525 nonn,tabl %O A293525 0,13 %A A293525 _Seiichi Manyama_, Oct 11 2017