A293542 a(1)=1; for n>1, a(n) = least integer greater than a(n-1) such that the sums of the divisors of the pairwise sums of a(1),...,a(n) are all distinct.
1, 2, 4, 8, 19, 28, 56, 72, 101, 144, 202, 240, 261, 448, 511, 602, 772, 806, 1152, 1296, 1541, 1602, 2016, 2256, 2900, 3322, 3362, 3978, 4376, 5887, 6416, 7702, 8228, 8578, 11341, 11382, 13376, 13692, 16083, 16380, 16544, 17382, 22726, 24944, 26302, 27508, 30580, 33184, 34020, 37474
Offset: 1
Keywords
Examples
Let s(n) be the sum of the divisors of n. a(3)!=3 because s(1+3)=s(2+2)=7. a(3)=4 because s(1+1)=3, s(1+2)=4, s(1+4)=6, s(2+2)=7, s(2+4)=12, and s(4,4)=15 are all distinct.
Links
- Logan J. Kleinwaks, Table of n, a(n) for n = 1..250