A293564 Starts of a record number of consecutive integers n such that n^2 + 1 is composite.
3, 7, 27, 41, 95, 185, 351, 497, 3391, 3537, 45371, 82735, 99065, 357165, 840905, 3880557, 27914937, 40517521, 104715207, 1126506905, 2084910531, 2442825347, 4332318177, 6716598047, 17736392221, 18205380337, 30869303807, 68506021365, 78491213265, 85620067845
Offset: 1
Keywords
Examples
7 is in the sequence since 7^2+1, 8^2+1 and 9^2+1 are composites, the first string of 3 consecutive composite numbers of the form n^2 + 1.
Links
- Betty Garrison, Consecutive integers for which n^2+1 is composite, Pacific Journal of Mathematics, Vol. 97, No. 1 (1981), pp. 93-96.
Programs
-
Mathematica
aQ[n_] := PrimeQ[n^2 + 1]; s = Flatten[Position[Range[100], _?(aQ[#] &)]]; dm = 1; a = {}; For[k = 0, k < Length[s] - 1, k++; d = s[[k + 1]]-s[[k]]; If[d > dm, dm = d; AppendTo[a, s[[k]] + 1]]]; a f[n_] := f[n] = Block[{s, k = f[n -1]}, s = Boole@ PrimeQ[ Range[k, k +n -1]^2 +1]; While[Plus @@ s > 0, s = Join[s, Boole@ PrimeQ[{(k +n)^2 + 1, (k +n +1)^2 +1}]]; s = Drop[s, 2]; k += 2]; k]; f[1] = 3; Do[ Print[{n, f@n}], {n, 329}] (* Robert G. Wilson v, Oct 12 2017 *)
Extensions
a(17)-a(20) from Robert G. Wilson v, Oct 12 2017
a(21)-a(22) from Giovanni Resta, Oct 13 2017
a(23)-a(27) from Chai Wah Wu, May 16 2018
a(28)-a(30) from Giovanni Resta, May 18 2018
Comments