cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293564 Starts of a record number of consecutive integers n such that n^2 + 1 is composite.

Original entry on oeis.org

3, 7, 27, 41, 95, 185, 351, 497, 3391, 3537, 45371, 82735, 99065, 357165, 840905, 3880557, 27914937, 40517521, 104715207, 1126506905, 2084910531, 2442825347, 4332318177, 6716598047, 17736392221, 18205380337, 30869303807, 68506021365, 78491213265, 85620067845
Offset: 1

Views

Author

Amiram Eldar, Oct 12 2017

Keywords

Comments

Garrison proved in 1981 that there are arbitrarily long strings of consecutive integers n such that n^2 + 1 is composite. Thus, if the sequence of primes of the form n^2 + 1 (A002496) is infinite, this sequence is also infinite.
The record lengths are 1, 3, 9, 13, 15, 19, 33, 39, 45, 87, 99, 111, 129, 151, 211, 287, 329, 345, 443, 501, 525, 533, 563, 579, 613, 623, 633, 635, 639, 689, ...

Examples

			7 is in the sequence since 7^2+1, 8^2+1 and 9^2+1 are composites, the first string of 3 consecutive composite numbers of the form n^2 + 1.
		

Crossrefs

Programs

  • Mathematica
    aQ[n_] := PrimeQ[n^2 + 1]; s = Flatten[Position[Range[100], _?(aQ[#] &)]]; dm = 1; a = {}; For[k = 0, k < Length[s] - 1, k++; d = s[[k + 1]]-s[[k]]; If[d > dm, dm = d; AppendTo[a, s[[k]] + 1]]]; a
    f[n_] := f[n] = Block[{s, k = f[n -1]}, s = Boole@ PrimeQ[ Range[k, k +n -1]^2 +1]; While[Plus @@ s > 0, s = Join[s, Boole@ PrimeQ[{(k +n)^2 + 1, (k +n +1)^2 +1}]]; s = Drop[s, 2]; k += 2]; k]; f[1] = 3;  Do[ Print[{n, f@n}], {n, 329}] (* Robert G. Wilson v, Oct 12 2017 *)

Extensions

a(17)-a(20) from Robert G. Wilson v, Oct 12 2017
a(21)-a(22) from Giovanni Resta, Oct 13 2017
a(23)-a(27) from Chai Wah Wu, May 16 2018
a(28)-a(30) from Giovanni Resta, May 18 2018