cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A293567 Expansion of e.g.f.: exp(x^2/(x^3 - 1)).

This page as a plain text file.
%I A293567 #10 Mar 31 2024 14:07:31
%S A293567 1,0,-2,0,12,-120,-120,5040,-38640,-181440,5412960,-33264000,
%T A293567 -478336320,12194582400,-50871300480,-2168559993600,49692144902400,
%U A293567 -59775248332800,-15819216007795200,329479616206540800,1101564635255884800,-174845824790757120000
%N A293567 Expansion of e.g.f.: exp(x^2/(x^3 - 1)).
%F A293567 E.g.f.: Product_{k>0} exp(x^(-(3*k-1))).
%t A293567 With[{nn=30},CoefficientList[Series[Exp[x^2/(x^3-1)],{x,0,nn}],x] Range[0,nn]!] (* _Harvey P. Dale_, Mar 31 2024 *)
%o A293567 (PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(x^2/(x^3-1))))
%o A293567 (PARI) N=66; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, exp(x^(3*k-1)))))
%Y A293567 E.g.f.: Product_{k>0} exp(x^(-(m*k-1))): A293532 (m=2), this sequence (m=3), A293568 (m=4).
%Y A293567 Cf. A293494.
%K A293567 sign
%O A293567 0,3
%A A293567 _Seiichi Manyama_, Oct 12 2017
%E A293567 Definition clarified by _Harvey P. Dale_, Mar 31 2024