A293578 Triangular array read by rows. One form of sieve of Eratosthenes (see comments for construction).
1, 2, 0, 2, 3, 0, 0, 0, 3, 4, 0, 0, 3, 0, 0, 4, 5, 0, 0, 0, 0, 0, 0, 0, 5, 6, 0, 0, 0, 4, 0, 4, 0, 0, 0, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 0, 8, 9, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 9, 10, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 10
Offset: 1
Examples
Array begins (zeros replaced by dots): 1 2 . 2 3 . . . 3 4 . . 3 . . 4 5 . . . . . . . 5 6 . . . 4 . 4 . . . 6 7 . . . . . . . . . . . 7 8 . . . . 5 . . . 5 . . . . 8 9 . . . . . . . 5 . . . . . . . 9
Crossrefs
Cf. A288969.
Programs
-
Mathematica
F[n_, t_] := Module[{x}, x = Floor[(-t + Sqrt[t^2 + 4 n])/2]; n - x (t + x)]; T[n_, t_] := F[n - 1, t] - F[n, t] + 1; ARow[n_] := Table[T[n, t], {t, -(n - 1), +(n - 1)}]; Table[ARow[n], {n, 1, 10}] // Flatten
Formula
If z is a nonzero value at coordinates (n,t) then
n = k*(k+t) where k is a positive integer solution of k^2 + tk - n = 0;
Moreover:
z = n/k + k - 1;
n = ((z+1)^2 - t^2)/4.
Comments