This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293579 #11 Oct 14 2017 09:26:31 %S A293579 3,16,66,248,892,3136,10888,37536,128880,441472,1510176,5161856, %T A293579 17635264,60233728,205697152,702386688,2398283520,8188622848, %U A293579 27958448640,95457597440,325915589632,1112751357952,3799182641152,12971244625920,44286646775808,151204164960256 %N A293579 Number of compositions of n where each part i is marked with a word of length i over a binary alphabet whose letters appear in alphabetical order and both letters occur at least once in the composition. %H A293579 Alois P. Heinz, <a href="/A293579/b293579.txt">Table of n, a(n) for n = 2..1000</a> %F A293579 From _Vaclav Kotesovec_, Oct 14 2017: (Start) %F A293579 a(n) = 6*a(n-1) - 10*a(n-2) + 4*a(n-3). %F A293579 a(n) ~ 2^(n/2 - 2) * (1+sqrt(2))^(n+1). %F A293579 a(n) = 2^(n/2 - 2) * ((sqrt(2)+1)^(n+1) - (sqrt(2)-1)^(n+1)) - 2^n. %F A293579 (End) %p A293579 b:= proc(n, k) option remember; `if`(n=0, 1, %p A293579 add(b(n-j, k)*binomial(j+k-1, k-1), j=1..n)) %p A293579 end: %p A293579 a:= n-> (k->add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(2): %p A293579 seq(a(n), n=2..30); %t A293579 Table[Simplify[2^(n/2 - 2)*((Sqrt[2]+1)^(n+1) - (Sqrt[2]-1)^(n+1)) - 2^n], {n, 2, 20}] (* _Vaclav Kotesovec_, Oct 14 2017 *) %Y A293579 Column k=2 of A261781. %K A293579 nonn %O A293579 2,1 %A A293579 _Alois P. Heinz_, Oct 12 2017