This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A293606 #17 Aug 18 2019 04:23:43 %S A293606 1,1,2,3,6,9,20,33,72,139 %N A293606 Number of unlabeled antichains of weight n. %C A293606 An antichain is a finite set of finite nonempty sets, none of which is a subset of any other. The weight of an antichain is the sum of cardinalities of its elements. %C A293606 From _Gus Wiseman_, Aug 15 2019: (Start) %C A293606 Also the number of non-isomorphic set multipartitions (multisets of sets) of weight n where every vertex is the unique common element of some subset of the edges. For example, the a(1) = 1 through a(6) = 20 set multipartitions are: %C A293606 {1} {1}{1} {1}{1}{1} {1}{2}{12} {1}{2}{2}{12} {12}{13}{23} %C A293606 {1}{2} {1}{2}{2} {1}{1}{1}{1} {1}{2}{3}{23} {1}{2}{12}{12} %C A293606 {1}{2}{3} {1}{1}{2}{2} {1}{1}{1}{1}{1} {1}{2}{13}{23} %C A293606 {1}{2}{2}{2} {1}{1}{2}{2}{2} {1}{2}{3}{123} %C A293606 {1}{2}{3}{3} {1}{2}{2}{2}{2} {1}{1}{2}{2}{12} %C A293606 {1}{2}{3}{4} {1}{2}{2}{3}{3} {1}{1}{2}{3}{23} %C A293606 {1}{2}{3}{3}{3} {1}{2}{2}{2}{12} %C A293606 {1}{2}{3}{4}{4} {1}{2}{3}{3}{23} %C A293606 {1}{2}{3}{4}{5} {1}{2}{3}{4}{34} %C A293606 {1}{1}{1}{1}{1}{1} %C A293606 {1}{1}{1}{2}{2}{2} %C A293606 {1}{1}{2}{2}{2}{2} %C A293606 {1}{1}{2}{2}{3}{3} %C A293606 {1}{2}{2}{2}{2}{2} %C A293606 {1}{2}{2}{3}{3}{3} %C A293606 {1}{2}{3}{3}{3}{3} %C A293606 {1}{2}{3}{3}{4}{4} %C A293606 {1}{2}{3}{4}{4}{4} %C A293606 {1}{2}{3}{4}{5}{5} %C A293606 {1}{2}{3}{4}{5}{6} %C A293606 (End) %F A293606 Euler transform of A293607. %e A293606 Non-isomorphic representatives of the a(5) = 9 antichains are: %e A293606 ((12345)), %e A293606 ((1)(2345)), ((12)(134)), ((12)(345)), %e A293606 ((1)(2)(345)), ((1)(23)(45)), ((2)(13)(14)), %e A293606 ((1)(2)(3)(45)), %e A293606 ((1)(2)(3)(4)(5)). %Y A293606 Cf. A006126, A006602, A007411, A007716, A048143, A049311, A283877, A293607. %Y A293606 Cf. A000372, A000612, A003182, A014466, A055621, A293993, A326704, A326972. %K A293606 nonn,more %O A293606 0,3 %A A293606 _Gus Wiseman_, Oct 13 2017